找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biological Networks and Pathway Analysis; Tatiana V. Tatarinova,Yuri Nikolsky Book 2017 Springer Science+Business Media LLC 2017 Protein-p

[復(fù)制鏈接]
樓主: Daguerreotype
51#
發(fā)表于 2025-3-30 09:11:10 | 只看該作者
52#
發(fā)表于 2025-3-30 13:35:02 | 只看該作者
Book 2017ble, comprehensive, and cutting-edge, .Biological Networks and Pathway Analysis .presents both “wet lab” experimental methods and computational tools in order to cover a broad spectrum of issues in this fascinating new field..
53#
發(fā)表于 2025-3-30 17:03:18 | 只看該作者
https://doi.org/10.1007/978-3-476-02897-6man-readable biological networks with a structured syntax are a powerful way of representing biological information generated from high-density data. This article presents sbv IMPROVER, a crowd-verification approach for the visualization and expansion of biological networks.
54#
發(fā)表于 2025-3-30 21:17:30 | 只看該作者
?Nichts Drittes … in der Natur??s annotating proteins with unknown function. The prediction models are represented in the form of human-readable rules, and they can be used effectively to add absent pathway information to many proteins in UniProtKB/TrEMBL database.
55#
發(fā)表于 2025-3-31 02:33:43 | 只看該作者
56#
發(fā)表于 2025-3-31 06:53:13 | 只看該作者
sbv IMPROVER: Modern Approach to Systems Biology,man-readable biological networks with a structured syntax are a powerful way of representing biological information generated from high-density data. This article presents sbv IMPROVER, a crowd-verification approach for the visualization and expansion of biological networks.
57#
發(fā)表于 2025-3-31 12:48:44 | 只看該作者
Rule Mining Techniques to Predict Prokaryotic Metabolic Pathways,s annotating proteins with unknown function. The prediction models are represented in the form of human-readable rules, and they can be used effectively to add absent pathway information to many proteins in UniProtKB/TrEMBL database.
58#
發(fā)表于 2025-3-31 16:21:25 | 只看該作者
Comprehensive Analyses of Tissue-Specific Networks with Implications to Psychiatric Diseases,ion to statistical and combinatorial issues in data analyses. This chapter describes computational approaches developed by us and the others to tackle challenges in tissue-specific network analyses, with the main focus on psychiatric diseases.
59#
發(fā)表于 2025-3-31 20:02:28 | 只看該作者
60#
發(fā)表于 2025-3-31 22:25:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴文县| 宣武区| 奇台县| 仁布县| 怀远县| 丰县| 岑巩县| 永登县| 三河市| 微山县| 堆龙德庆县| 卫辉市| 濮阳县| 沭阳县| 济宁市| 锦屏县| 宜宾市| 班戈县| 东明县| 十堰市| 马鞍山市| 威宁| 林周县| 淳安县| 兴海县| 眉山市| 汪清县| 南和县| 巴南区| 海兴县| 桓台县| 朝阳区| 沂源县| 宜州市| 永年县| 栖霞市| 浠水县| 建始县| 宜阳县| 永春县| 东台市|