找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biological Networks and Pathway Analysis; Tatiana V. Tatarinova,Yuri Nikolsky Book 2017 Springer Science+Business Media LLC 2017 Protein-p

[復(fù)制鏈接]
樓主: Daguerreotype
51#
發(fā)表于 2025-3-30 09:11:10 | 只看該作者
52#
發(fā)表于 2025-3-30 13:35:02 | 只看該作者
Book 2017ble, comprehensive, and cutting-edge, .Biological Networks and Pathway Analysis .presents both “wet lab” experimental methods and computational tools in order to cover a broad spectrum of issues in this fascinating new field..
53#
發(fā)表于 2025-3-30 17:03:18 | 只看該作者
https://doi.org/10.1007/978-3-476-02897-6man-readable biological networks with a structured syntax are a powerful way of representing biological information generated from high-density data. This article presents sbv IMPROVER, a crowd-verification approach for the visualization and expansion of biological networks.
54#
發(fā)表于 2025-3-30 21:17:30 | 只看該作者
?Nichts Drittes … in der Natur??s annotating proteins with unknown function. The prediction models are represented in the form of human-readable rules, and they can be used effectively to add absent pathway information to many proteins in UniProtKB/TrEMBL database.
55#
發(fā)表于 2025-3-31 02:33:43 | 只看該作者
56#
發(fā)表于 2025-3-31 06:53:13 | 只看該作者
sbv IMPROVER: Modern Approach to Systems Biology,man-readable biological networks with a structured syntax are a powerful way of representing biological information generated from high-density data. This article presents sbv IMPROVER, a crowd-verification approach for the visualization and expansion of biological networks.
57#
發(fā)表于 2025-3-31 12:48:44 | 只看該作者
Rule Mining Techniques to Predict Prokaryotic Metabolic Pathways,s annotating proteins with unknown function. The prediction models are represented in the form of human-readable rules, and they can be used effectively to add absent pathway information to many proteins in UniProtKB/TrEMBL database.
58#
發(fā)表于 2025-3-31 16:21:25 | 只看該作者
Comprehensive Analyses of Tissue-Specific Networks with Implications to Psychiatric Diseases,ion to statistical and combinatorial issues in data analyses. This chapter describes computational approaches developed by us and the others to tackle challenges in tissue-specific network analyses, with the main focus on psychiatric diseases.
59#
發(fā)表于 2025-3-31 20:02:28 | 只看該作者
60#
發(fā)表于 2025-3-31 22:25:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
微博| 达拉特旗| 新源县| 台山市| 墨江| 五华县| 马公市| 长治县| 商丘市| 个旧市| 分宜县| 北辰区| 容城县| 马公市| 张家界市| 涞水县| 临江市| 营口市| 唐山市| 福鼎市| 富锦市| 鄂托克前旗| 黄石市| 拉萨市| 永州市| 华蓥市| 太仓市| 朝阳区| 嵊泗县| 依兰县| 克什克腾旗| 海门市| 汶川县| 峨边| 盘山县| 台前县| 巧家县| 尚义县| 邻水| 沙雅县| 莱西市|