找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Bioinformatics Research and Applications; 17th International S Yanjie Wei,Min Li,Zhipeng Cai Conference proceedings 2021 Springer Nature Sw

[復(fù)制鏈接]
樓主: FLAW
51#
發(fā)表于 2025-3-30 09:13:40 | 只看該作者
52#
發(fā)表于 2025-3-30 16:06:42 | 只看該作者
53#
發(fā)表于 2025-3-30 16:36:36 | 只看該作者
Teach Meticulously and Test Rigorouslythe classification accuracy of models (LDA, DT, 1NN, SVM, RT) using our feature representation is higher than using the five acoustic features in baseline experiment, and the classification accuracy on the model (DT, 1NN) even exceeds the linguistic features of baseline experiment. The best classifi
54#
發(fā)表于 2025-3-30 21:23:59 | 只看該作者
Learning Lessons from Past Fiascoesvels are predictive of drug-specific survival outcomes. Some of the identified proteins were supported by published literature. Using the gene expression data from TCGA, we found the mRNA expression of .11% of the drug-specific proteins also showed significant correlation with drug-specific survival
55#
發(fā)表于 2025-3-31 04:10:50 | 只看該作者
Learning Lessons from Past Fiascoese-level fundus images. Meanwhile, we design a pseudo-label attention structure and deep supervision method, to increase the attention of the model to lesion features and improve the grading performance. Experiments on the open-source DR grading datasets EyePACS, Messidior, IDRiD, and FGADR can prove
56#
發(fā)表于 2025-3-31 08:48:47 | 只看該作者
Understanding AI Risks and Its Impactso-layer RGCN to predict microbe-disease associations. Compared with other methods, TNRGCN achieves a good performance in cross validation. Meanwhile, case studies for diseases demonstrate TNRGCN has a good performance for predicting potential microbe-disease associations.
57#
發(fā)表于 2025-3-31 10:30:35 | 只看該作者
https://doi.org/10.1057/9780230116122model-based and model-free RL approaches to achieve more efficient personalized sepsis treatment. We demonstrate that the policy derived from our framework outperforms policies prescribed by physicians, model-based only methods, and model-free only approaches.
58#
發(fā)表于 2025-3-31 13:58:12 | 只看該作者
Keeping the Family Business Healthyital. In the training-validation stage, we collect 1211 images for a 5-fold cross-validation. Our method can classify DF images and non-DF images with the area under the receiver operating characteristic curve (AUC) value of 94.87., accuracy of 88.19., sensitivity of 84.79., specificity of 90.63., a
59#
發(fā)表于 2025-3-31 17:46:41 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家港市| 仪陇县| 涞水县| 游戏| 台南市| 南昌县| 永仁县| 湘潭市| 岳池县| 怀仁县| 内江市| 新晃| 兴城市| 建水县| 克什克腾旗| 龙井市| 满城县| 罗城| 尚义县| 蒲江县| 兰州市| 麻阳| 临洮县| 德钦县| 工布江达县| 吉木乃县| 本溪| 临夏县| 青州市| 金溪县| 崇明县| 沁水县| 襄垣县| 横峰县| 康保县| 新蔡县| 阿克苏市| 衡阳县| 陇西县| 乐平市| 岗巴县|