找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biogeography-Based Optimization: Algorithms and Applications; Yujun Zheng,Xueqin Lu,Shengyong Chen Book 2019 Springer Nature Singapore Pte

[復(fù)制鏈接]
樓主: antibody
31#
發(fā)表于 2025-3-26 23:52:39 | 只看該作者
32#
發(fā)表于 2025-3-27 03:41:47 | 只看該作者
Ecogeography-Based Optimization: Enhanced by Ecogeographic Barriers and Differentiations,s two novel migration operators, named local migration and global migration, which borrow ideas from the migration models of ecogeography to enrich information sharing among the solutions. This chapter introduces the EBO algorithm in detail and shows its significant improvement over the basic BBO an
33#
發(fā)表于 2025-3-27 06:42:27 | 只看該作者
34#
發(fā)表于 2025-3-27 13:08:44 | 只看該作者
Application of Biogeography-Based Optimization in Transportation,s can be modeled as combinatorial optimization problems. Nowadays, with the development of transportation systems, most of such problems are high-dimensional and/or NP-hard. In recent years, we have adapted BBO algorithm to a variety of transportation problems and achieved good results.
35#
發(fā)表于 2025-3-27 14:51:43 | 只看該作者
36#
發(fā)表于 2025-3-27 19:32:37 | 只看該作者
Application of Biogeography-Based Optimization in Image Processing,, we use BBO and its improved versions to a set of optimization problems in image processing, including image compression, salient object detection, and image segmentation. The results demonstrate the effectiveness of BBO in optimization problems in image processing.
37#
發(fā)表于 2025-3-27 22:12:42 | 只看該作者
Biogeography-Based Optimization in Machine Learning,ted by structural design and parameter selection. This chapter introduces how to use BBO and its variants for optimizing structures and parameters of ANNs. The results show that BBO is a powerful method for enhancing the performance of many machine learning models.
38#
發(fā)表于 2025-3-28 02:04:59 | 只看該作者
39#
發(fā)表于 2025-3-28 10:00:30 | 只看該作者
Book 2019n. The algorithms and applications are organized in a step-by-step manner and clearly described with the help of pseudo-codes and flowcharts. The readers will learn not only the basic concepts of BBO but also how to apply and adapt the algorithms to the engineering optimization problems they actually encounter..
40#
發(fā)表于 2025-3-28 13:57:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
瓦房店市| 台北市| 津市市| 临安市| 韶关市| 新安县| 瑞金市| 裕民县| 嘉善县| 合作市| 全南县| 东莞市| 嘉兴市| 阳东县| 琼结县| 镇远县| 盖州市| 江门市| 恩平市| 福泉市| 静乐县| 阜宁县| 商城县| 喜德县| 龙江县| 醴陵市| 寿宁县| 沭阳县| 元氏县| 克山县| 江城| 沙河市| 双辽市| 河津市| 上虞市| 东城区| 镇原县| 华亭县| 凤冈县| 海伦市| 三原县|