找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Biogeography-Based Optimization: Algorithms and Applications; Yujun Zheng,Xueqin Lu,Shengyong Chen Book 2019 Springer Nature Singapore Pte

[復(fù)制鏈接]
樓主: antibody
31#
發(fā)表于 2025-3-26 23:52:39 | 只看該作者
32#
發(fā)表于 2025-3-27 03:41:47 | 只看該作者
Ecogeography-Based Optimization: Enhanced by Ecogeographic Barriers and Differentiations,s two novel migration operators, named local migration and global migration, which borrow ideas from the migration models of ecogeography to enrich information sharing among the solutions. This chapter introduces the EBO algorithm in detail and shows its significant improvement over the basic BBO an
33#
發(fā)表于 2025-3-27 06:42:27 | 只看該作者
34#
發(fā)表于 2025-3-27 13:08:44 | 只看該作者
Application of Biogeography-Based Optimization in Transportation,s can be modeled as combinatorial optimization problems. Nowadays, with the development of transportation systems, most of such problems are high-dimensional and/or NP-hard. In recent years, we have adapted BBO algorithm to a variety of transportation problems and achieved good results.
35#
發(fā)表于 2025-3-27 14:51:43 | 只看該作者
36#
發(fā)表于 2025-3-27 19:32:37 | 只看該作者
Application of Biogeography-Based Optimization in Image Processing,, we use BBO and its improved versions to a set of optimization problems in image processing, including image compression, salient object detection, and image segmentation. The results demonstrate the effectiveness of BBO in optimization problems in image processing.
37#
發(fā)表于 2025-3-27 22:12:42 | 只看該作者
Biogeography-Based Optimization in Machine Learning,ted by structural design and parameter selection. This chapter introduces how to use BBO and its variants for optimizing structures and parameters of ANNs. The results show that BBO is a powerful method for enhancing the performance of many machine learning models.
38#
發(fā)表于 2025-3-28 02:04:59 | 只看該作者
39#
發(fā)表于 2025-3-28 10:00:30 | 只看該作者
Book 2019n. The algorithms and applications are organized in a step-by-step manner and clearly described with the help of pseudo-codes and flowcharts. The readers will learn not only the basic concepts of BBO but also how to apply and adapt the algorithms to the engineering optimization problems they actually encounter..
40#
發(fā)表于 2025-3-28 13:57:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐东| 福州市| 临泉县| 泸定县| 双流县| 许昌市| 屏南县| 申扎县| 顺昌县| 永泰县| 仪征市| 玉树县| 郁南县| 襄垣县| 封丘县| 年辖:市辖区| 仁寿县| 平昌县| 定陶县| 永济市| 崇左市| 大洼县| 桂平市| 石柱| 革吉县| 阿勒泰市| 淮安市| 江津市| 九江县| 泗阳县| 桂林市| 密云县| 唐河县| 郴州市| 广饶县| 安义县| 灵璧县| SHOW| 花莲市| 嘉峪关市| 柏乡县|