找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bio-Inspired Credit Risk Analysis; Computational Intell Lean Yu,Shouyang Wang,Ligang Zhou Book 2008 Springer-Verlag Berlin Heidelberg 2008

[復(fù)制鏈接]
樓主: ACID
21#
發(fā)表于 2025-3-25 06:52:40 | 只看該作者
Schiffbautechnische Gesellschaftdes. Almost all financial organizations, such as banks, credit institutions, clients, etc., need this kind of information for some firms in which they have an interest of any kind. However, business credit risk management is not an easy thing because business credit risk management is a very complex
22#
發(fā)表于 2025-3-25 10:34:19 | 只看該作者
Das Raumfestigkeitsproblem im Schiffbausolving a financial MCDM problem, by introducing some intelligent agents as decision-makers. Compared with traditional GDM methods, our proposed multicriteria fuzzy GDM model has five distinct features. First of all, intelligent agents, instead of human experts, are used as decisionmakers (DMs), thu
23#
發(fā)表于 2025-3-25 15:18:07 | 只看該作者
https://doi.org/10.1007/978-3-540-77803-5Bio-Inspired Computing; Computational Intelligence; Credit Risk Analysis; Credit Scoring; Ensembl; Suppor
24#
發(fā)表于 2025-3-25 19:28:12 | 只看該作者
25#
發(fā)表于 2025-3-25 22:17:10 | 只看該作者
26#
發(fā)表于 2025-3-26 00:20:12 | 只看該作者
27#
發(fā)表于 2025-3-26 07:03:06 | 只看該作者
Credit Risk Analysis with Computational Intelligence: A Reviewuch a large credit market to averse the credit risk. Therefore, an effective credit risk analysis model has been a crucial factor because an effective credit risk analysis technique would be transformed into significant future savings..The remainder of this chapter is organized as follows. In next s
28#
發(fā)表于 2025-3-26 09:17:59 | 只看該作者
29#
發(fā)表于 2025-3-26 14:34:24 | 只看該作者
Credit Risk Evaluation Using SVM with Direct Search for Parameter Selectionows. In Section 3.2, the LSSVM and DS methodology are described briefly. Section 3.3 presents a computational experiment to demonstrate the effectiveness and efficiency of the model and simultaneously we compared the performance between the DS and DOE, GA, and GS methods. Section 3.4 gives concludin
30#
發(fā)表于 2025-3-26 20:30:34 | 只看該作者
Hybridizing Rough Sets and SVM for Credit Risk Evaluationiculty of extracting rules from a training support vector machine and possess the robustness which is lacking for rough set based approaches. To illustrate the effectiveness of the proposed system, two publicly credit datasets including both consumer and corporation credits are used..The rest of the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 02:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿克陶县| 文昌市| 宁夏| 什邡市| 邵武市| 平罗县| 长顺县| 顺平县| 芦溪县| 靖江市| 新巴尔虎右旗| 山东| 秀山| 汾阳市| 新乡县| 皮山县| 张家港市| 同江市| 武功县| 平利县| 蓬溪县| 邳州市| 鹰潭市| 平阳县| 碌曲县| 思茅市| 海伦市| 宝坻区| 丰城市| 正定县| 赞皇县| 墨竹工卡县| 双牌县| 弋阳县| 广州市| 镇远县| 通州区| 卓资县| 黄大仙区| 灵宝市| 北流市|