找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bio-Inspired Computing: Theories and Applications; 17th International C Linqiang Pan,Dongming Zhao,Jianqing Lin Conference proceedings 2023

[復(fù)制鏈接]
查看: 39825|回復(fù): 58
樓主
發(fā)表于 2025-3-21 16:28:15 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bio-Inspired Computing: Theories and Applications
期刊簡稱17th International C
影響因子2023Linqiang Pan,Dongming Zhao,Jianqing Lin
視頻videohttp://file.papertrans.cn/187/186344/186344.mp4
學(xué)科分類Communications in Computer and Information Science
圖書封面Titlebook: Bio-Inspired Computing: Theories and Applications; 17th International C Linqiang Pan,Dongming Zhao,Jianqing Lin Conference proceedings 2023
影響因子This book constitutes the refereed proceedings of the 17th International Conference on Bio-Inspired Computing: Theories and Applications, BIC-TA?2022, held in Wuhan, China, during December 16–18, 2022..The 56 full papers included in this book were carefully reviewed and selected from 148 submissions. They were organized in topical sections as follows: evolutionary computation and swarm intelligence; machine learning and deep learning; intelligent control and simulation and molecular computing and nanotechnology..
Pindex Conference proceedings 2023
The information of publication is updating

書目名稱Bio-Inspired Computing: Theories and Applications影響因子(影響力)




書目名稱Bio-Inspired Computing: Theories and Applications影響因子(影響力)學(xué)科排名




書目名稱Bio-Inspired Computing: Theories and Applications網(wǎng)絡(luò)公開度




書目名稱Bio-Inspired Computing: Theories and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bio-Inspired Computing: Theories and Applications被引頻次




書目名稱Bio-Inspired Computing: Theories and Applications被引頻次學(xué)科排名




書目名稱Bio-Inspired Computing: Theories and Applications年度引用




書目名稱Bio-Inspired Computing: Theories and Applications年度引用學(xué)科排名




書目名稱Bio-Inspired Computing: Theories and Applications讀者反饋




書目名稱Bio-Inspired Computing: Theories and Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:27:43 | 只看該作者
Research on Multi-modal Multi-objective Path Planning by Improved Ant Colonyblem. However, the existing algorithms to solve the path problem can only find a single optimal path, cannot satisfactorily find multiple groups of optimal solutions at the same time, and it is very necessary to propose as many solutions as possible. So this paper carries out a research on the Multi
板凳
發(fā)表于 2025-3-22 02:57:38 | 只看該作者
Local Path Planning Algorithm Designed for Unmanned Surface Vessel Based on Improved Genetic Algoritod and genetic obstacle is above the globally planned algorithm. Among them, genetic algorithm has strong spatial search ability and strong adaptive ability. However, due to the low efficiency of the traditional genetic algorithm, it cannot meet the needs of the real-time path planning of unmanned s
地板
發(fā)表于 2025-3-22 05:37:35 | 只看該作者
5#
發(fā)表于 2025-3-22 11:08:26 | 只看該作者
6#
發(fā)表于 2025-3-22 14:42:08 | 只看該作者
S-Plane Controller Parameter Tuning Based on IAFSA for UUVing error caused by manually setting S-plane control parameters, the artificial fish swarm algorithm is improved by adopting methods such as predatory behavior, adaptive step size, and field of view with attenuation factor to improve the optimization performance of the artificial fish swarm. The imp
7#
發(fā)表于 2025-3-22 18:46:15 | 只看該作者
A Reinforcement-Learning-Driven Bees Algorithm for?Large-Scale Earth Observation Satellite Schedulinuild a mathematical programming model of the EOSSP. After that, we propose a reinforcement-learning-driven bees algorithm (RLBA) to solve a large-scale EOSSP (LSEOSSP). The RLBA adopts a Q-learning method to select search operations from global search and neighbourhood search. We define a new state
8#
發(fā)表于 2025-3-23 01:18:12 | 只看該作者
9#
發(fā)表于 2025-3-23 03:11:13 | 只看該作者
Global Path Planning for Unmanned Ships Based on Improved Particle Swarm Algorithmt navigation environment. To address the problem that the particle swarm algorithm is easy to fall into local optimum at the later stage, we first integrate chaos theory into the basic particle swarm algorithm, and generate chaotic population and replace some particles that fall into local optimum b
10#
發(fā)表于 2025-3-23 05:42:43 | 只看該作者
A Self-adaptive Single-Objective Multitasking Optimization AlgorithmTOs often perform better than conventional single-task evolutionary. Transferring knowledge plays a very important role in multitask optimization algorithms. Many existing methods transfer elite solutions between tasks to improve algorithm performance, however, these methods may or produce negative
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 11:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昔阳县| 垣曲县| 大埔区| 肥西县| 乐清市| 仪陇县| 西乌珠穆沁旗| 保靖县| 泾阳县| 嘉义市| 迁西县| 重庆市| 都安| 拉萨市| 上杭县| 孝昌县| 图木舒克市| 沙雅县| 城口县| 宁安市| 信宜市| 白山市| 开封县| 东乡| 县级市| 安庆市| 凭祥市| 辉县市| 文山县| 中阳县| 颍上县| 武宣县| 安化县| 花莲市| 塔河县| 铜鼓县| 响水县| 睢宁县| 平谷区| 商南县| 曲麻莱县|