找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Binary Quadratic Forms; Classical Theory and Duncan A. Buell Book 1989 Springer-Verlag New York Inc. 1989 Arithmetic.Finite.algebra.calculu

[復(fù)制鏈接]
樓主: Precise
31#
發(fā)表于 2025-3-26 21:43:19 | 只看該作者
Globalisierung und Weltpolitik,al again being the determination of canonical forms for the equivalence classes. In the case of negative discriminants, the “reduced” forms are essentially unique in a given equivalence class. For positive discriminants, however, it is not only the case that many reduced forms can lie in the same cl
32#
發(fā)表于 2025-3-27 03:38:23 | 只看該作者
33#
發(fā)表于 2025-3-27 07:47:14 | 只看該作者
https://doi.org/10.1007/978-3-531-90181-7, only cyclic groups are possible. For class number 4, only the cyclic or Klein 4-groups are possible, and these can be distinguished by the number of ambiguous forms. Thus, the groups for discriminants ?39, ?55, ?63, ?155, ?56, ?68, and ?80 are cyclic, while the groups of discriminants ?84 and ?96
34#
發(fā)表于 2025-3-27 09:54:25 | 只看該作者
35#
發(fā)表于 2025-3-27 16:18:08 | 只看該作者
https://doi.org/10.1007/978-3-531-90181-7ected, in the case of positive discriminant, with the question of which discriminants Δ possess solutions of the negative Pell equation . and both questions are related for all discriminants to the existence of higher-order reciprocity laws analogous to the law of quadratic reciprocity. The connecti
36#
發(fā)表于 2025-3-27 21:32:29 | 只看該作者
https://doi.org/10.1007/978-3-531-90181-7 the discriminant, and a class which represents a prime . dividing Δ also represents Δ/., so the 2-Sylow subgroup can only be elementary if no prime factor of Δ is a quadratic residue of all the other prime factors of Δ (For the sake of argument, we ignore for the moment the extra characters . and .
37#
發(fā)表于 2025-3-27 23:27:45 | 只看該作者
The 2-Sylow Subgroup, the discriminant, and a class which represents a prime . dividing Δ also represents Δ/., so the 2-Sylow subgroup can only be elementary if no prime factor of Δ is a quadratic residue of all the other prime factors of Δ (For the sake of argument, we ignore for the moment the extra characters . and .
38#
發(fā)表于 2025-3-28 03:57:41 | 只看該作者
39#
發(fā)表于 2025-3-28 07:55:49 | 只看該作者
40#
發(fā)表于 2025-3-28 14:19:51 | 只看該作者
luid dynamics. It covers that part of the subject matter dealing with the equations for incompressible viscous flows and their determination by means of numerical methods. A substantial portion of the book contains new results and unpublished material.978-3-0348-9689-4978-3-0348-8579-9Series ISSN 0373-3149 Series E-ISSN 2296-6072
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尉氏县| 通道| 蒙自县| 兴仁县| 和静县| 晋中市| 赤壁市| 犍为县| 福贡县| 扎兰屯市| 永春县| 乌鲁木齐县| 合水县| 财经| 子长县| 大关县| 兴文县| 安仁县| 京山县| 奉化市| 高雄县| 科技| 罗田县| 江达县| 吴江市| 塔城市| 邵阳市| 开鲁县| 古丈县| 太保市| 阿鲁科尔沁旗| 华坪县| 镇巴县| 东城区| 成安县| 昭苏县| 定结县| 麦盖提县| 旬阳县| 宜君县| 府谷县|