找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Binary Quadratic Forms; Classical Theory and Duncan A. Buell Book 1989 Springer-Verlag New York Inc. 1989 Arithmetic.Finite.algebra.calculu

[復(fù)制鏈接]
樓主: Precise
31#
發(fā)表于 2025-3-26 21:43:19 | 只看該作者
Globalisierung und Weltpolitik,al again being the determination of canonical forms for the equivalence classes. In the case of negative discriminants, the “reduced” forms are essentially unique in a given equivalence class. For positive discriminants, however, it is not only the case that many reduced forms can lie in the same cl
32#
發(fā)表于 2025-3-27 03:38:23 | 只看該作者
33#
發(fā)表于 2025-3-27 07:47:14 | 只看該作者
https://doi.org/10.1007/978-3-531-90181-7, only cyclic groups are possible. For class number 4, only the cyclic or Klein 4-groups are possible, and these can be distinguished by the number of ambiguous forms. Thus, the groups for discriminants ?39, ?55, ?63, ?155, ?56, ?68, and ?80 are cyclic, while the groups of discriminants ?84 and ?96
34#
發(fā)表于 2025-3-27 09:54:25 | 只看該作者
35#
發(fā)表于 2025-3-27 16:18:08 | 只看該作者
https://doi.org/10.1007/978-3-531-90181-7ected, in the case of positive discriminant, with the question of which discriminants Δ possess solutions of the negative Pell equation . and both questions are related for all discriminants to the existence of higher-order reciprocity laws analogous to the law of quadratic reciprocity. The connecti
36#
發(fā)表于 2025-3-27 21:32:29 | 只看該作者
https://doi.org/10.1007/978-3-531-90181-7 the discriminant, and a class which represents a prime . dividing Δ also represents Δ/., so the 2-Sylow subgroup can only be elementary if no prime factor of Δ is a quadratic residue of all the other prime factors of Δ (For the sake of argument, we ignore for the moment the extra characters . and .
37#
發(fā)表于 2025-3-27 23:27:45 | 只看該作者
The 2-Sylow Subgroup, the discriminant, and a class which represents a prime . dividing Δ also represents Δ/., so the 2-Sylow subgroup can only be elementary if no prime factor of Δ is a quadratic residue of all the other prime factors of Δ (For the sake of argument, we ignore for the moment the extra characters . and .
38#
發(fā)表于 2025-3-28 03:57:41 | 只看該作者
39#
發(fā)表于 2025-3-28 07:55:49 | 只看該作者
40#
發(fā)表于 2025-3-28 14:19:51 | 只看該作者
luid dynamics. It covers that part of the subject matter dealing with the equations for incompressible viscous flows and their determination by means of numerical methods. A substantial portion of the book contains new results and unpublished material.978-3-0348-9689-4978-3-0348-8579-9Series ISSN 0373-3149 Series E-ISSN 2296-6072
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 12:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武义县| 六枝特区| 望奎县| 扶余县| 淮滨县| 屯门区| 钟山县| 乐清市| 玉门市| 涟源市| 临洮县| 宿松县| 东安县| 张掖市| 武平县| 武陟县| 东乌珠穆沁旗| 若羌县| 三明市| 青神县| 新竹县| 建始县| 营山县| 财经| 灵璧县| 始兴县| 云浮市| 纳雍县| 彭阳县| 建水县| 板桥市| 黄陵县| 思南县| 祁阳县| 鹿邑县| 长宁区| 清徐县| 会宁县| 喀喇| 定安县| 信宜市|