找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Binary Quadratic Forms; An Algorithmic Appro Johannes Buchmann,Ulrich Vollmer Book 2007 Springer-Verlag Berlin Heidelberg 2007 Number theor

[復制鏈接]
樓主: minuscule
21#
發(fā)表于 2025-3-25 06:07:53 | 只看該作者
Politikvorschl?ge und ZusammenfassungLet . ε {±1}, ., and .. In this chapter we define the product of lattices in A and characterize the two-dimensional lattices in A whose product is a lattice. By a form we mean an irrational form with real coefficients and non-zero discriminant. By an . we mean an integer Δ with Δ ≡ 0, 1 mod 4 which is not a square in ?.
22#
發(fā)表于 2025-3-25 11:05:43 | 只看該作者
23#
發(fā)表于 2025-3-25 15:09:26 | 只看該作者
https://doi.org/10.1007/978-3-531-90181-7Let . be a real quadratic order, let Δ be the discriminant of ., and let . be the regulator of ..
24#
發(fā)表于 2025-3-25 16:00:37 | 只看該作者
Internationale Politik studierenIn this chapter, we will discuss several ways in which the theory of binary quadratic forms can be employed for cryptographic applications. Goals of cryptography encompass the maintenance of confidentiality, authenticity, integrity and non-reputability of electronic documents.
25#
發(fā)表于 2025-3-25 23:40:37 | 只看該作者
26#
發(fā)表于 2025-3-26 03:43:24 | 只看該作者
27#
發(fā)表于 2025-3-26 05:55:51 | 只看該作者
Forms, Bases, Points, and Lattices,In this chapter we explain the correspondence between binary quadratic forms with real coefficients and points, R-bases, and lattices in the real plane. This correspondence will enable us to use quadratic number fields and the geometry of numbers in the theory of forms.
28#
發(fā)表于 2025-3-26 09:23:58 | 只看該作者
29#
發(fā)表于 2025-3-26 15:03:19 | 只看該作者
30#
發(fā)表于 2025-3-26 19:27:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
集安市| 广州市| 陆河县| 灌阳县| 宣城市| 青岛市| 深州市| 广宁县| 大荔县| 南靖县| 天门市| 德昌县| 四川省| 炉霍县| 永顺县| 光泽县| 满洲里市| 板桥市| 临泉县| 肃南| 米泉市| 渝北区| 五莲县| 高邮市| 建德市| 呼和浩特市| 莆田市| 柏乡县| 冷水江市| 鄂尔多斯市| 咸阳市| 文成县| 那曲县| 水城县| 大安市| 江都市| 庐江县| 黄山市| 紫金县| 新宁县| 大理市|