找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis; A Frequency Domain A Gy?rgy Terdik Book 1999 Springer Sc

[復(fù)制鏈接]
樓主: Radiofrequency
11#
發(fā)表于 2025-3-23 13:05:50 | 只看該作者
https://doi.org/10.1007/978-1-4612-1552-3Fitting; Variance; calculus; statistics; time series
12#
發(fā)表于 2025-3-23 17:55:57 | 只看該作者
13#
發(fā)表于 2025-3-23 19:47:04 | 只看該作者
Lecture Notes in Statisticshttp://image.papertrans.cn/b/image/186237.jpg
14#
發(fā)表于 2025-3-24 00:51:08 | 只看該作者
15#
發(fā)表于 2025-3-24 05:00:21 | 只看該作者
https://doi.org/10.1007/1-4020-5256-1d to investigate the stationary functionals of the Brownian motion processes in terms of higher order stochastic integrals. He developed the so called chaotic series representations [146]. The frequency domain analysis of stationary flows in the space of £. functionals of standard Wiener processes c
16#
發(fā)表于 2025-3-24 09:09:55 | 只看該作者
17#
發(fā)表于 2025-3-24 11:28:58 | 只看該作者
18#
發(fā)表于 2025-3-24 17:47:21 | 只看該作者
19#
發(fā)表于 2025-3-24 20:17:13 | 只看該作者
Foundations,ting the expectation of nonlinear function of Gaussian random variables, see [13] and [127]. Then we define the classical Hermite polynomials and their generalization with several variables. A rather simple introduction to cumulants is given. The diagram formulae are used to show the basic connectio
20#
發(fā)表于 2025-3-25 00:43:26 | 只看該作者
,The Multiple Wiener-It? Integral,d to investigate the stationary functionals of the Brownian motion processes in terms of higher order stochastic integrals. He developed the so called chaotic series representations [146]. The frequency domain analysis of stationary flows in the space of £. functionals of standard Wiener processes c
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 15:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
班玛县| 镇平县| 永川市| 昌江| 汶上县| 鹰潭市| 尚志市| 宁陵县| 精河县| 富平县| 盈江县| 海口市| 龙游县| 乐至县| 大同县| 南川市| 韩城市| 聂荣县| 长兴县| 凤凰县| 榆林市| 麻栗坡县| 汉阴县| 峨眉山市| 乐东| 天津市| 高邮市| 如东县| 庆云县| 蕲春县| 石门县| 石台县| 青浦区| 屏边| 柯坪县| 会理县| 盘锦市| 河间市| 林芝县| 鹿邑县| 沂水县|