找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bilinear Integrable Systems: from Classical to Quantum, Continuous to Discrete; Proceedings of the N Ludwig Faddeev,Pierre Van Moerbeke,Fra

[復(fù)制鏈接]
樓主: bradycardia
31#
發(fā)表于 2025-3-27 00:03:28 | 只看該作者
Botched Engagement in the Intifadahappen to be expressible as the integrability condition for a system of linear equations. Linear eigenvalue problems and associated t-evolutions have produced classes of soliton equations [1, 2] and have led to the disclosure of major integrability features (such as the existence of multisoliton sol
32#
發(fā)表于 2025-3-27 01:44:50 | 只看該作者
https://doi.org/10.1057/9780230372474air) as a function of one-field is studied. Methodically, the transforms of the coefficients are equalized to Frechèt differential (first term of the Taylor series on prolonged space) to establish the operator forms. In the commutative (Abelian) case, as it was recently proved for the KP-KdV Lax ope
33#
發(fā)表于 2025-3-27 09:10:50 | 只看該作者
34#
發(fā)表于 2025-3-27 10:00:57 | 只看該作者
Deborah F. Shmueli,Rassem Khamaisis representing a natural difference deformation of the so called two parametric Darboux-P?shl-Teller model and to describe explicitly the solutions of the related difference Schr?dinger equation. In the limit when the difference step tends to zero the related formulas reproduce well known results co
35#
發(fā)表于 2025-3-27 15:16:25 | 只看該作者
36#
發(fā)表于 2025-3-27 20:44:38 | 只看該作者
37#
發(fā)表于 2025-3-27 23:18:07 | 只看該作者
Bilinear Integrable Systems: from Classical to Quantum, Continuous to Discrete978-1-4020-3503-6Series ISSN 1568-2609
38#
發(fā)表于 2025-3-28 02:38:09 | 只看該作者
39#
發(fā)表于 2025-3-28 08:52:00 | 只看該作者
40#
發(fā)表于 2025-3-28 13:09:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
牡丹江市| 恩施市| 黔南| 汕头市| 宁武县| 邛崃市| 商都县| 金门县| 揭东县| 嘉兴市| 石首市| 华安县| 西贡区| 广灵县| 平和县| 客服| 天全县| 修武县| 霍城县| 青川县| 盘山县| 安塞县| 阜新市| 九龙城区| 修文县| 高邑县| 老河口市| 宁陕县| 馆陶县| 苍梧县| 连南| 绥芬河市| 铜陵市| 临颍县| 通山县| 安庆市| 武邑县| 玉田县| 班玛县| 芒康县| 南充市|