找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bilinear Integrable Systems: from Classical to Quantum, Continuous to Discrete; Proceedings of the N Ludwig Faddeev,Pierre Van Moerbeke,Fra

[復(fù)制鏈接]
樓主: bradycardia
31#
發(fā)表于 2025-3-27 00:03:28 | 只看該作者
Botched Engagement in the Intifadahappen to be expressible as the integrability condition for a system of linear equations. Linear eigenvalue problems and associated t-evolutions have produced classes of soliton equations [1, 2] and have led to the disclosure of major integrability features (such as the existence of multisoliton sol
32#
發(fā)表于 2025-3-27 01:44:50 | 只看該作者
https://doi.org/10.1057/9780230372474air) as a function of one-field is studied. Methodically, the transforms of the coefficients are equalized to Frechèt differential (first term of the Taylor series on prolonged space) to establish the operator forms. In the commutative (Abelian) case, as it was recently proved for the KP-KdV Lax ope
33#
發(fā)表于 2025-3-27 09:10:50 | 只看該作者
34#
發(fā)表于 2025-3-27 10:00:57 | 只看該作者
Deborah F. Shmueli,Rassem Khamaisis representing a natural difference deformation of the so called two parametric Darboux-P?shl-Teller model and to describe explicitly the solutions of the related difference Schr?dinger equation. In the limit when the difference step tends to zero the related formulas reproduce well known results co
35#
發(fā)表于 2025-3-27 15:16:25 | 只看該作者
36#
發(fā)表于 2025-3-27 20:44:38 | 只看該作者
37#
發(fā)表于 2025-3-27 23:18:07 | 只看該作者
Bilinear Integrable Systems: from Classical to Quantum, Continuous to Discrete978-1-4020-3503-6Series ISSN 1568-2609
38#
發(fā)表于 2025-3-28 02:38:09 | 只看該作者
39#
發(fā)表于 2025-3-28 08:52:00 | 只看該作者
40#
發(fā)表于 2025-3-28 13:09:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹿邑县| 蓝田县| 南康市| 英德市| 潢川县| 航空| 旌德县| 章丘市| 杭锦后旗| 濉溪县| 肇源县| 拜城县| 聂拉木县| 汉源县| 嘉禾县| 连城县| 通辽市| 鲁甸县| 安仁县| 尼木县| 长乐市| 双峰县| 波密县| 平陆县| 简阳市| 都匀市| 吴江市| 大渡口区| 肃北| 广饶县| 大城县| 商水县| 长汀县| 屯昌县| 榆社县| 泾源县| 五莲县| 丹寨县| 新丰县| 荥阳市| 合山市|