找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bilinear Control Systems; Matrices in Action David Elliott Book 2009 Springer Science+Business Media B.V. 2009 Control Systems.Lie Algebras

[復(fù)制鏈接]
樓主: Addiction
31#
發(fā)表于 2025-3-26 23:16:28 | 只看該作者
Before the Special Relationshipcated. Similar questions lead to serious problems in algebraic geometry that were considered for general polynomial discrete-time control systems in Sontag [244] but are beyond the scope of this book. Discrete-time bilinear systems were mentioned in Section 1.8 as a method of approximating the traje
32#
發(fā)表于 2025-3-27 03:54:16 | 只看該作者
33#
發(fā)表于 2025-3-27 09:20:24 | 只看該作者
https://doi.org/10.1057/9780230101371could profit from a deeper understanding of the underlying mathematics. A fewof them, chosen for ease of exposition and formathematical interest, will be reported in this chapter.More applications can be found in Bruni et al. [43], Mohler and Kolodziej [210], the collections edited by Mohler and Rub
34#
發(fā)表于 2025-3-27 11:09:20 | 只看該作者
35#
發(fā)表于 2025-3-27 13:35:42 | 只看該作者
Thick Recognition — Past and Presentnd. denote the real line and the complex plane, respectively, but also the real and complex number fields. The symbol. means the half-line.. If. then. where. and. are real. Since both fields. and. are needed in definitions, let the symbol. indicate either field.. will denote the .-dimensional linear
36#
發(fā)表于 2025-3-27 20:01:13 | 只看該作者
37#
發(fā)表于 2025-3-27 22:33:07 | 只看該作者
https://doi.org/10.1023/b101451Control Systems; Lie Algebras; Lie algebra; Matrix; Matrix Groups; algebra; brandonwiskunde; control theory
38#
發(fā)表于 2025-3-28 03:23:29 | 只看該作者
978-90-481-8169-8Springer Science+Business Media B.V. 2009
39#
發(fā)表于 2025-3-28 07:48:35 | 只看該作者
40#
發(fā)表于 2025-3-28 13:47:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁海县| 瓦房店市| 闸北区| 拜城县| 丹巴县| 和田市| 莎车县| 千阳县| 将乐县| 奉贤区| 文昌市| 东丰县| 两当县| 日照市| 鄂伦春自治旗| 葵青区| 巧家县| 安阳县| 建湖县| 措美县| 丰城市| 千阳县| 达拉特旗| 岳阳市| 霸州市| 临夏县| 股票| 泸水县| 德惠市| 吉安县| 那坡县| 金塔县| 武乡县| 株洲市| 犍为县| 峨眉山市| 密云县| 华阴市| 五指山市| 田东县| 嘉善县|