找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bilevel Programming Problems; Theory, Algorithms a Stephan Dempe,Vyacheslav Kalashnikov,Nataliya Kala Book 2015 Springer-Verlag Berlin Heid

[復(fù)制鏈接]
查看: 51078|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:35:14 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bilevel Programming Problems
期刊簡稱Theory, Algorithms a
影響因子2023Stephan Dempe,Vyacheslav Kalashnikov,Nataliya Kala
視頻videohttp://file.papertrans.cn/187/186225/186225.mp4
發(fā)行地址Provides a comprehensive introduction to the rapidly developing field of research in bilevel optimization.Develops and introduces recent applications of bilevel programming in energy problems.Presents
學(xué)科分類Energy Systems
圖書封面Titlebook: Bilevel Programming Problems; Theory, Algorithms a Stephan Dempe,Vyacheslav Kalashnikov,Nataliya Kala Book 2015 Springer-Verlag Berlin Heid
影響因子.This book describes recent theoretical findings relevant to bilevel programming in general, and in mixed-integer bilevel programming in particular. It describes recent applications in energy problems, such as the stochastic bilevel optimization approaches used in the natural gas industry. New algorithms for solving linear and mixed-integer bilevel programming problems are presented and explained..
Pindex Book 2015
The information of publication is updating

書目名稱Bilevel Programming Problems影響因子(影響力)




書目名稱Bilevel Programming Problems影響因子(影響力)學(xué)科排名




書目名稱Bilevel Programming Problems網(wǎng)絡(luò)公開度




書目名稱Bilevel Programming Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bilevel Programming Problems被引頻次




書目名稱Bilevel Programming Problems被引頻次學(xué)科排名




書目名稱Bilevel Programming Problems年度引用




書目名稱Bilevel Programming Problems年度引用學(xué)科排名




書目名稱Bilevel Programming Problems讀者反饋




書目名稱Bilevel Programming Problems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:49:43 | 只看該作者
Isotopes and the Natural Environmentistence of an optimal solution are formulated. Using a continuous knapsack problem with right-hand side perturbation in the lower level both formulations are illustrated. In the last part a number of applications of the problem are given.
板凳
發(fā)表于 2025-3-22 03:09:10 | 只看該作者
Isotopes and the Natural Environmentistence of an optimal solution are formulated. Using a continuous knapsack problem with right-hand side perturbation in the lower level both formulations are illustrated. In the last part a number of applications of the problem are given.
地板
發(fā)表于 2025-3-22 04:35:30 | 只看該作者
https://doi.org/10.1007/978-3-030-33652-3e upper and the lower level variables is moved from the upper to the lower level problem or one constraint is added which is not active in the lower level problem at an optimal solution? What happens if a variable is added in the lower level? The bilevel optimization problem is a .- hard optimizatio
5#
發(fā)表于 2025-3-22 09:27:31 | 只看該作者
Isotopes and the Natural Environmentevel problem, the bilevel optimization problem can be transformed into a single-level optimization problem. Two of these transformations are fully equivalent to the bilevel problem, the MPEC is not. Using these transformations, necessary conditions for local optimal solutions can be formulated: In t
6#
發(fā)表于 2025-3-22 16:53:12 | 只看該作者
7#
發(fā)表于 2025-3-22 17:31:52 | 只看該作者
8#
發(fā)表于 2025-3-22 22:26:13 | 只看該作者
9#
發(fā)表于 2025-3-23 04:47:56 | 只看該作者
10#
發(fā)表于 2025-3-23 05:52:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 06:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广丰县| 濮阳市| 霍林郭勒市| 根河市| 阿克陶县| 武安市| 太仓市| 新乡县| 久治县| 封开县| 玉环县| 修水县| 望都县| 琼海市| 永济市| 北碚区| 巴东县| 余江县| 泽普县| 松潘县| 濮阳县| 靖安县| 筠连县| 乡宁县| 政和县| 安西县| 漳平市| 平江县| 嘉鱼县| 建宁县| 绿春县| 马边| 许昌市| 高安市| 含山县| 左云县| 诸城市| 高安市| 北辰区| 博兴县| 象州县|