找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big and Complex Data Analysis; Methodologies and Ap S. Ejaz Ahmed Book 2017 Springer International Publishing AG 2017 big data analysis.com

[復(fù)制鏈接]
查看: 24568|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:52:13 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Big and Complex Data Analysis
期刊簡稱Methodologies and Ap
影響因子2023S. Ejaz Ahmed
視頻videohttp://file.papertrans.cn/186/185756/185756.mp4
發(fā)行地址Explores the latest advances in the analysis of high-dimensional and complex data.Features methodological contributions as well as applications.Stimulates discussion and further research in high-dimen
學(xué)科分類Contributions to Statistics
圖書封面Titlebook: Big and Complex Data Analysis; Methodologies and Ap S. Ejaz Ahmed Book 2017 Springer International Publishing AG 2017 big data analysis.com
影響因子.This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essential new developments in the field..The continued and rapid advancement of modern technology now allows scientists to collect data of increasingly unprecedented size and complexity. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data. Simultaneous variable selection and estimation is one of the key statistical problems involved in analyzing such big and complex data.. The purpose of this book is to stimulate research and foster interaction between researchers in the area of high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in big data and high-dimensional data analysis and their potential for the advancement of both the mathematical and statistical sciences; 2) identify important directions for f
Pindex Book 2017
The information of publication is updating

書目名稱Big and Complex Data Analysis影響因子(影響力)




書目名稱Big and Complex Data Analysis影響因子(影響力)學(xué)科排名




書目名稱Big and Complex Data Analysis網(wǎng)絡(luò)公開度




書目名稱Big and Complex Data Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Big and Complex Data Analysis被引頻次




書目名稱Big and Complex Data Analysis被引頻次學(xué)科排名




書目名稱Big and Complex Data Analysis年度引用




書目名稱Big and Complex Data Analysis年度引用學(xué)科排名




書目名稱Big and Complex Data Analysis讀者反饋




書目名稱Big and Complex Data Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:44:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:54:04 | 只看該作者
地板
發(fā)表于 2025-3-22 07:29:03 | 只看該作者
5#
發(fā)表于 2025-3-22 11:47:18 | 只看該作者
Bias-Reduced Moment Estimators of Population Spectral Distribution and Their Applicationsich are then adopted to test the order of PSDs. The simulation study demonstrates the desirable performance of the order test in conjunction with the proposed moment estimators for the PSD of large covariance matrices.
6#
發(fā)表于 2025-3-22 15:43:45 | 只看該作者
Two-Point Boundary Value Problems,ariables into different categories, and the regularization methods can be applied afterwards. The technical conditions of model selection consistency for this broad framework relax those for the one-step regularization methods. Extensive simulations show the competitive performance of the new method.
7#
發(fā)表于 2025-3-22 19:17:55 | 只看該作者
8#
發(fā)表于 2025-3-23 00:41:30 | 只看該作者
Defining Information Management Requirementsny existing methods fail because of lack of computational power. The finite-sample properties and the utility of the proposed method are examined through an extensive simulation study and an analysis of the national kidney transplant data.
9#
發(fā)表于 2025-3-23 04:20:50 | 只看該作者
10#
發(fā)表于 2025-3-23 09:08:35 | 只看該作者
Regularization After Marginal Learning for Ultra-High Dimensional Regression Modelsariables into different categories, and the regularization methods can be applied afterwards. The technical conditions of model selection consistency for this broad framework relax those for the one-step regularization methods. Extensive simulations show the competitive performance of the new method.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 16:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁明县| 绩溪县| 陆川县| 隆德县| 墨江| 林甸县| 岳普湖县| 乌拉特后旗| 宝鸡市| 宁德市| 炎陵县| 安仁县| 稻城县| 和田县| 丹巴县| 云浮市| 吉首市| 龙州县| 潞城市| 托克逊县| 夏邑县| 东海县| 怀仁县| 白水县| 麻江县| 星子县| 河东区| 渑池县| 周至县| 法库县| 砀山县| 八宿县| 图们市| 卢龙县| 镇宁| 观塘区| 广西| 玛纳斯县| 德令哈市| 山丹县| 呼图壁县|