找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Scientific Data Benchmarks, Architecture, and Systems; First Workshop, SDBA Rui Ren,Chen Zheng,Jianfeng Zhan Conference proceedings 201

[復(fù)制鏈接]
查看: 37737|回復(fù): 41
樓主
發(fā)表于 2025-3-21 18:27:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Big Scientific Data Benchmarks, Architecture, and Systems
期刊簡(jiǎn)稱(chēng)First Workshop, SDBA
影響因子2023Rui Ren,Chen Zheng,Jianfeng Zhan
視頻videohttp://file.papertrans.cn/186/185748/185748.mp4
學(xué)科分類(lèi)Communications in Computer and Information Science
圖書(shū)封面Titlebook: Big Scientific Data Benchmarks, Architecture, and Systems; First Workshop, SDBA Rui Ren,Chen Zheng,Jianfeng Zhan Conference proceedings 201
影響因子.This book constitutes the refereed proceedings of the First Workshop on Big Scientific Data Benchmarks, Architecture, and Systems, SDBA 2018, held in Beijing, China, in June 2018..The 10 revised full papers presented were carefully reviewed and selected from 22 submissions. The papers are organized in topical sections on benchmarking; performance optimization; algorithms; big science data framework..
Pindex Conference proceedings 2019
The information of publication is updating

書(shū)目名稱(chēng)Big Scientific Data Benchmarks, Architecture, and Systems影響因子(影響力)




書(shū)目名稱(chēng)Big Scientific Data Benchmarks, Architecture, and Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Big Scientific Data Benchmarks, Architecture, and Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Big Scientific Data Benchmarks, Architecture, and Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Big Scientific Data Benchmarks, Architecture, and Systems被引頻次




書(shū)目名稱(chēng)Big Scientific Data Benchmarks, Architecture, and Systems被引頻次學(xué)科排名




書(shū)目名稱(chēng)Big Scientific Data Benchmarks, Architecture, and Systems年度引用




書(shū)目名稱(chēng)Big Scientific Data Benchmarks, Architecture, and Systems年度引用學(xué)科排名




書(shū)目名稱(chēng)Big Scientific Data Benchmarks, Architecture, and Systems讀者反饋




書(shū)目名稱(chēng)Big Scientific Data Benchmarks, Architecture, and Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:10:45 | 只看該作者
Stable Vector Autoregressive Processesated data reaches to petabytes scale. Retrieving data from massive data occupies a large proportion of data processing in HEP. Hence, the data query latency and throughput are the most important metrics for HEP data management. Inspired by the indexing technology of databases, the technology that im
板凳
發(fā)表于 2025-3-22 01:09:25 | 只看該作者
https://doi.org/10.1007/978-1-4899-3184-9ionships”. Now, the graph database system is used to analyze complex relationship between entities, especially, in the scientific research field. For example, the RDF-based graph database system has been used for biological data processing. Many previous works have proved that the graph database sys
地板
發(fā)表于 2025-3-22 06:27:11 | 只看該作者
5#
發(fā)表于 2025-3-22 09:45:28 | 只看該作者
Christopher Chatfield,Alexander J. Collinsonness is leaving parts of updating computation on server which reduces the burden of network via making transmitted data sparse. But above tricks’ convergences are not well-proved. In this paper, based on above commonness, we propose a more general algorithm named as asynchronous COMID and prove it
6#
發(fā)表于 2025-3-22 14:14:55 | 只看該作者
7#
發(fā)表于 2025-3-22 18:05:46 | 只看該作者
The Optimum Number of Latent Variables,ning data is required to define the normal behavior, but it is expensive to annotate the normal part for large volume data. Secondly, many algorithms are parameter-laden, which are hard to be generalized to different dataset. This paper is motivated to overcome these disadvantages. It is believed th
8#
發(fā)表于 2025-3-22 21:45:51 | 只看該作者
Chemometrics and Multivariate Calibration,olution of material irradiation damage. With the improvement of memory and computational power, the multiscale simulation puts forward high demands for supercomputing, big data, and artificial intelligence. This paper explores a collaborative framework of supercomputing, big data, and artificial int
9#
發(fā)表于 2025-3-23 02:28:11 | 只看該作者
Introduction to Muon Spin Spectroscopyt’s more, the heterogeneity and multi-source of Scientific Big Data (SBD), resulting in a wide variety of databases, scientific devices and functional areas, make the incompatibility and conflict between system modules inevitable. In this context, the paper focuses on the design and technology requi
10#
發(fā)表于 2025-3-23 07:11:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
革吉县| 天长市| 韶关市| 扶沟县| 杨浦区| 聂荣县| 蛟河市| 靖西县| 奇台县| 罗定市| 祥云县| 石棉县| 贡觉县| 大理市| 洪江市| 织金县| 云安县| 东至县| 文成县| 饶河县| 科尔| 永平县| 安乡县| 揭西县| 商城县| 交城县| 永靖县| 监利县| 竹北市| 翁源县| 陕西省| 宝兴县| 东乡族自治县| 苍南县| 集贤县| 平乐县| 苗栗县| 抚宁县| 金川县| 澄江县| 临澧县|