找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data – BigData 2021; 10th International C Jinpeng Wei,Liang-Jie Zhang Conference proceedings 2022 Springer Nature Switzerland AG 2022 a

[復(fù)制鏈接]
查看: 19117|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:20:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Big Data – BigData 2021
期刊簡(jiǎn)稱10th International C
影響因子2023Jinpeng Wei,Liang-Jie Zhang
視頻videohttp://file.papertrans.cn/186/185720/185720.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Big Data – BigData 2021; 10th International C Jinpeng Wei,Liang-Jie Zhang Conference proceedings 2022 Springer Nature Switzerland AG 2022 a
影響因子This book constitutes the refereed proceedings of the 10th International Conference on Big Data, BigData 2021, held online as part of SCF 2021, during December 10-14, 2021..The 6 full and 2 short papers presented were carefully reviewed and selected from 53 submissions. The topics covered are Big Data Architecture, Big Data Modeling, Big Data As A Service, Big Data for Vertical Industries (Government, Healthcare, etc.), Big Data Analytics, Big Data Toolkits, Big Data Open Platforms, Economic Analysis, Big Data for Enterprise Transformation, Big Data in Business Performance Management, Big Data for Business Model Innovations and Analytics, Big Data in Enterprise Management Models and Practices, Big Data in Government Management Models and Practices, and Big Data in Smart Planet Solutions...?.
Pindex Conference proceedings 2022
The information of publication is updating

書目名稱Big Data – BigData 2021影響因子(影響力)




書目名稱Big Data – BigData 2021影響因子(影響力)學(xué)科排名




書目名稱Big Data – BigData 2021網(wǎng)絡(luò)公開度




書目名稱Big Data – BigData 2021網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Big Data – BigData 2021被引頻次




書目名稱Big Data – BigData 2021被引頻次學(xué)科排名




書目名稱Big Data – BigData 2021年度引用




書目名稱Big Data – BigData 2021年度引用學(xué)科排名




書目名稱Big Data – BigData 2021讀者反饋




書目名稱Big Data – BigData 2021讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:53:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:45:29 | 只看該作者
Fundamentals of Optics and Plasma Physics, several critical concepts such as blockchainization, gamification, tokenization, and virtualization in relation to four Ps of marketing mix: People, Place, Product, and Process; although as many as ten Ps have been proposed, four of them are sufficient for our purposes.
地板
發(fā)表于 2025-3-22 08:18:51 | 只看該作者
Conference proceedings 2022 for Business Model Innovations and Analytics, Big Data in Enterprise Management Models and Practices, Big Data in Government Management Models and Practices, and Big Data in Smart Planet Solutions...?.
5#
發(fā)表于 2025-3-22 12:10:34 | 只看該作者
6#
發(fā)表于 2025-3-22 15:26:42 | 只看該作者
Syntax, Semantics, and Ambiguityhile voting algorithm combined with oversampling method (SmoteTomek) can improve the recall of the minority class by 40.4%, without decreasing the accuracy of models on other majority classes. Afterall, in training a text classification model with multi-class imbalanced datasets, Voting algorithm combined with SmoteTomek can be a preference.
7#
發(fā)表于 2025-3-22 20:08:49 | 只看該作者
8#
發(fā)表于 2025-3-23 00:15:15 | 只看該作者
Springer Series in Optical Sciencesesian network to build the dependency relationship between the sensor and the actuator; finally, the model’s detection result of the attack data is calculated. Theoretical analysis and experimental results show that compared with Deep Neural Network (DNN) and Support Vector Machine (SVM), the model in the article has improved time and accuracy.
9#
發(fā)表于 2025-3-23 05:02:44 | 只看該作者
A Combination of Resampling and Ensemble Method for Text Classification on Imbalanced Datahile voting algorithm combined with oversampling method (SmoteTomek) can improve the recall of the minority class by 40.4%, without decreasing the accuracy of models on other majority classes. Afterall, in training a text classification model with multi-class imbalanced datasets, Voting algorithm combined with SmoteTomek can be a preference.
10#
發(fā)表于 2025-3-23 06:41:25 | 只看該作者
Citizens’ Continuous-Use Intention to Open Government Data: Empirical Evidence from Chinae satisfaction, trust in government and trust in the Internet significantly affects the expectation confirmation. But perceived usefulness, trust in government and trust in the Internet had no significant effect on public satisfaction.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通化市| 温泉县| 盐津县| 汉阴县| 连南| 荆门市| 搜索| 黑河市| 永顺县| 昭通市| 禄劝| 东丰县| 图片| 庆城县| 牡丹江市| 常山县| 六安市| 蚌埠市| 峨边| 兴义市| 华坪县| 福清市| 托克逊县| 蓝田县| 仙居县| 隆昌县| 吕梁市| 凤冈县| 武宁县| 布拖县| 襄垣县| 渭南市| 宜兰市| 枝江市| 屯留县| 霸州市| 华安县| 宁安市| 沾益县| 临沧市| 石渠县|