找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data – BigData 2020; 9th International Co Surya Nepal,Wenqi Cao,Liang-Jie Zhang Conference proceedings 2020 Springer Nature Switzerland

[復制鏈接]
查看: 36691|回復: 60
樓主
發(fā)表于 2025-3-21 17:20:59 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Big Data – BigData 2020
期刊簡稱9th International Co
影響因子2023Surya Nepal,Wenqi Cao,Liang-Jie Zhang
視頻videohttp://file.papertrans.cn/186/185719/185719.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Big Data – BigData 2020; 9th International Co Surya Nepal,Wenqi Cao,Liang-Jie Zhang Conference proceedings 2020 Springer Nature Switzerland
影響因子.This book constitutes the proceedings of the 9th International Conference on Big Data, BigData 2020, held as part of SCF 2020, during September 18-20, 2020. The conference was planned to take place in Honolulu, HI, USA and was changed to a virtual format due to the COVID-19 pandemic...The 16 full and 3 short papers presented were carefully reviewed and selected from 52 submissions. The topics covered are Big Data Architecture, Big Data Modeling, Big Data As A Service, Big Data for Vertical Industries (Government, Healthcare, etc.), Big Data Analytics, Big Data Toolkits, Big Data Open Platforms, Economic Analysis, Big Data for Enterprise Transformation, Big Data in Business Performance Management, Big Data for Business Model Innovations and Analytics, Big Data in Enterprise Management Models and Practices, Big Data in Government Management Models and Practices, and Big Data in Smart Planet Solutions...?.
Pindex Conference proceedings 2020
The information of publication is updating

書目名稱Big Data – BigData 2020影響因子(影響力)




書目名稱Big Data – BigData 2020影響因子(影響力)學科排名




書目名稱Big Data – BigData 2020網(wǎng)絡公開度




書目名稱Big Data – BigData 2020網(wǎng)絡公開度學科排名




書目名稱Big Data – BigData 2020被引頻次




書目名稱Big Data – BigData 2020被引頻次學科排名




書目名稱Big Data – BigData 2020年度引用




書目名稱Big Data – BigData 2020年度引用學科排名




書目名稱Big Data – BigData 2020讀者反饋




書目名稱Big Data – BigData 2020讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:51:37 | 只看該作者
A Performance Prediction Model for Spark Applicationsmber of configuration parameters that are strongly related to performance. Spark performance, for a given application, can significantly vary because of input data type and size, design & implementation of algorithm, computational resources and parameter configuration. So, involvement of all these v
板凳
發(fā)表于 2025-3-22 02:11:53 | 只看該作者
Predicting the DJIA with News Headlines and Historic Data Using Hybrid Genetic Algorithm/Support Vectors. We first examine two state-of-the-art AI techniques, hybrid genetic algorithm/support vector regression and bidirectional encoder representations from transformers (BERT). After that, we proposed a new AI model that uses hybrid genetic algorithm/support vector regression and BERT to predict da
地板
發(fā)表于 2025-3-22 05:53:01 | 只看該作者
5#
發(fā)表于 2025-3-22 09:07:57 | 只看該作者
6#
發(fā)表于 2025-3-22 16:00:03 | 只看該作者
7#
發(fā)表于 2025-3-22 20:39:49 | 只看該作者
A Web Application for Feral Cat Recognition Through Deep Learningnd detect the number of . feral cats of Australia using deep learning algorithms targeted to data captured from a set of remote sensing cameras. Feral cat recognition is an especially challenging application of deep learning since the cats are often similar and, in some cases, differ only in very sm
8#
發(fā)表于 2025-3-22 23:26:21 | 只看該作者
9#
發(fā)表于 2025-3-23 02:17:50 | 只看該作者
10#
發(fā)表于 2025-3-23 06:55:25 | 只看該作者
Ensemble Learning for Heterogeneous Missing Data Imputationl and model-based methods. While the former brings bias to the analyses, the latter is usually designed for limited and specific use cases. To overcome the limitations of the two methods, we present a stacked ensemble framework based on the integration of the adaptive random forest algorithm, the Ja
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
集贤县| 元谋县| 昭觉县| 休宁县| 兴业县| 松潘县| 鄯善县| 吕梁市| 故城县| 长岛县| 通道| 修文县| 瑞金市| 黔东| 武冈市| 邯郸县| 青神县| 兴城市| 建水县| 论坛| 金阳县| 赤城县| 马龙县| 云和县| 石河子市| 丹阳市| 汉中市| 诸城市| 原阳县| 泽普县| 确山县| 福清市| 光山县| 花莲县| 芜湖市| 诏安县| 昌都县| 牡丹江市| 隆子县| 泾源县| 依安县|