找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data in Energy Economics; Hui Liu,Nikolaos Nikitas,Rui Yang Book 2022 Science Press 2022 Energy Economy.Big Data Analysis.Time Series

[復(fù)制鏈接]
查看: 19987|回復(fù): 43
樓主
發(fā)表于 2025-3-21 19:36:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Big Data in Energy Economics
影響因子2023Hui Liu,Nikolaos Nikitas,Rui Yang
視頻videohttp://file.papertrans.cn/186/185702/185702.mp4
發(fā)行地址Evaluates science technologies by a large number of simulation experiments.Introduces state-of-art data science methods for big data analysis of the energy economy.Provides econometric analysis for th
學(xué)科分類Management for Professionals
圖書封面Titlebook: Big Data in Energy Economics;  Hui Liu,Nikolaos Nikitas,Rui Yang Book 2022 Science Press 2022 Energy Economy.Big Data Analysis.Time Series
影響因子This book combines energy economics and big data modeling analysis in energy conversion and management and comprehensively introduces the relevant theories, key technologies, and application examples of the smart energy economy. With the help of time series big data modeling results, energy economy managers develop reasonable and feasible pricing mechanisms of electricity price and improve the absorption capacity of the power grid. In addition, they also carry out scientific power equipment scheduling and cost–benefit analysis according to the results of data mining, so as to avoid the loss caused by accidental damage of equipment. Energy users adjust their power consumption behavior through the modeling results provided and achieve the effect of energy saving and emission reduction while reasonably reducing the electricity expenditure..This book provides an important reference for professionals in related fields such as smart energy, smart economy, energy Internet, artificial intelligence, energy economics and policy..
Pindex Book 2022
The information of publication is updating

書目名稱Big Data in Energy Economics影響因子(影響力)




書目名稱Big Data in Energy Economics影響因子(影響力)學(xué)科排名




書目名稱Big Data in Energy Economics網(wǎng)絡(luò)公開度




書目名稱Big Data in Energy Economics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Big Data in Energy Economics被引頻次




書目名稱Big Data in Energy Economics被引頻次學(xué)科排名




書目名稱Big Data in Energy Economics年度引用




書目名稱Big Data in Energy Economics年度引用學(xué)科排名




書目名稱Big Data in Energy Economics讀者反饋




書目名稱Big Data in Energy Economics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:10:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:01:55 | 只看該作者
Reinforcement Or Transformatione international crude oil market. The experiment compares the prediction capabilities of bi-directional long short-term memory network and deep belief network. Finally, this chapter provides an econometric analysis of the international crude oil market, big data technologies, and policy recommendations for developing the energy economy.
地板
發(fā)表于 2025-3-22 07:18:46 | 只看該作者
African Marriages in Transformationfects of decomposition method and Boosting method on model prediction accuracy are compared. Finally, the chapter concludes with an econometric analysis of international coal markets and big data technologies, and proposes policy recommendations for energy economic development in this context.
5#
發(fā)表于 2025-3-22 08:56:02 | 只看該作者
Introduction,e scope of the book is summarized. This book combines energy economics and big data modeling analysis in energy conversion and management, and comprehensively introduces the relevant theories, key technologies, and application cases of the smart energy economy.
6#
發(fā)表于 2025-3-22 15:33:26 | 只看該作者
Big Data Analysis of Energy Economics in Oil Market,e international crude oil market. The experiment compares the prediction capabilities of bi-directional long short-term memory network and deep belief network. Finally, this chapter provides an econometric analysis of the international crude oil market, big data technologies, and policy recommendations for developing the energy economy.
7#
發(fā)表于 2025-3-22 18:00:05 | 只看該作者
Big Data Analysis of Energy Economics in Coal Market,fects of decomposition method and Boosting method on model prediction accuracy are compared. Finally, the chapter concludes with an econometric analysis of international coal markets and big data technologies, and proposes policy recommendations for energy economic development in this context.
8#
發(fā)表于 2025-3-23 00:57:25 | 只看該作者
Book 2022ories, key technologies, and application examples of the smart energy economy. With the help of time series big data modeling results, energy economy managers develop reasonable and feasible pricing mechanisms of electricity price and improve the absorption capacity of the power grid. In addition, t
9#
發(fā)表于 2025-3-23 02:37:34 | 只看該作者
Claude-Jean Allègre,Gil Michard technologies. In this chapter, the concept of EI is first introduced, and comparisons of the conventional energy system and new energy system are revealed. Then, the integration of different systems with energy system is discussed. Meanwhile, specific approaches with information and communication technologies are introduced.
10#
發(fā)表于 2025-3-23 07:08:59 | 只看該作者
Introduction to General Relativityr applications is analyzed for China, America, and Europe. Although the wind energy applications in these regions vary, they all show promising prospects. Wind power is expanding dramatically to meet the growing energy needs of the world.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴里| 山西省| 双流县| 东阿县| 诸暨市| 大埔区| 宁海县| 雷山县| 阿城市| 汉寿县| 赤水市| 夹江县| 北流市| 普安县| 巴南区| 罗山县| 枣庄市| 当涂县| 盖州市| 金塔县| 巴南区| 高阳县| 古浪县| 瑞丽市| 靖安县| 滨海县| 于田县| 富顺县| 清原| 靖江市| 阳新县| 灵寿县| 明光市| 彩票| 襄城县| 白河县| 馆陶县| 壶关县| 汽车| 永和县| 冀州市|