找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data and Social Computing; 7th China National C Xiaofeng Meng,Qi Xuan,Zi-Ke Zhang Conference proceedings 2022 The Editor(s) (if applica

[復制鏈接]
樓主: Odious
11#
發(fā)表于 2025-3-23 10:34:30 | 只看該作者
Identifying Spammers by?Completing the?Ratings of?Low-Degree Usersby these spammers do not match the quality of items, confusing the boundaries of good and bad items and seriously endangering the real interests of merchants and normal users. To eliminate the malicious influence caused by these spammers, many effective spamming detection algorithms are proposed in
12#
發(fā)表于 2025-3-23 15:18:12 | 只看該作者
Predicting Upvotes and?Downvotes in?Location-Based Social Networks Using Machine Learningswers or posts, most OSNs design “upvote” or “l(fā)ike” buttons, and some of them provide “downvote” or “dislike” buttons as well. While there are some existing works making predictions related to upvote, downvote prediction has never been systematically explored in OSNs before. However, downvote is jus
13#
發(fā)表于 2025-3-23 20:28:17 | 只看該作者
How Does Participation Experience in Collective Behavior Contribute to Participation Willingness: A participate. Based on a survey of migrant workers from Shenzhen in China, this study constructs a mediated moderating model, focusing on the moderating role of social networks in the relationship and the mediating role of institutional support. The results show that collective behavior participatio
14#
發(fā)表于 2025-3-23 22:42:39 | 只看該作者
15#
發(fā)表于 2025-3-24 03:10:58 | 只看該作者
16#
發(fā)表于 2025-3-24 07:33:50 | 只看該作者
17#
發(fā)表于 2025-3-24 12:45:57 | 只看該作者
18#
發(fā)表于 2025-3-24 15:07:36 | 只看該作者
Research on?Network Invulnerability and?Its Application on?AS-Level Internet Topologyi-attributes. Finally, we conduct vulnerability analysis experiments on five real datasets to verify the validity of our method. Specially, we apply the method to autonomous systems (AS) Internet networks for different countries, which is of great significance to developing network security.
19#
發(fā)表于 2025-3-24 22:31:26 | 只看該作者
FedDFA: Dual-Factor Aggregation for?Federated Driver Distraction Detectionis, FedDFA is introduced, which calculates the aggregation weights based on the number of images and that of drivers on each client for better parameter aggregation during federated learning. Extensive experiments are conducted and experimental results show that FedDFA achieves satisfactory performance.
20#
發(fā)表于 2025-3-25 02:35:26 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 04:33
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新晃| 昌宁县| 洛浦县| 廊坊市| 中卫市| 漳浦县| 双流县| 拉萨市| 集贤县| 大洼县| 高碑店市| 寿光市| 额济纳旗| 东乌珠穆沁旗| 湾仔区| 聂拉木县| 左权县| 彰化县| 绵阳市| 枞阳县| 高陵县| 长葛市| 大名县| 佛坪县| 壶关县| 陆川县| 隆德县| 辽中县| 浏阳市| 澄城县| 闻喜县| 太和县| 资溪县| 驻马店市| 乌兰县| 石柱| 客服| 廊坊市| 托克逊县| 邮箱| 岚皋县|