找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data and Artificial Intelligence; 11th International C Vikram Goyal,Naveen Kumar,Dhruv Kumar Conference proceedings 2023 The Editor(s)

[復制鏈接]
樓主: 游牧
41#
發(fā)表于 2025-3-28 17:24:05 | 只看該作者
42#
發(fā)表于 2025-3-28 20:06:18 | 只看該作者
KG-CTG: Citation Generation Through Knowledge Graph-Guided Large Language Modelsset of standard S2ORC dataset, which only consists of computer science academic research papers in the English Language. Vicuna performs best for this task with 14.15 Meteor, 12.88 Rouge-1, 1.52 Rouge-2, and 10.94 Rouge-L. Also, Alpaca performs best, and improves the performance by 36.98% in Rouge-1
43#
發(fā)表于 2025-3-28 23:49:41 | 只看該作者
SciPhyRAG - Retrieval Augmentation to?Improve LLMs on?Physics Q &Ae and . increase on ROUGE-2 scores. This approach has the potential to be used to reshape Physics Q &A by LLMs and has a lasting impact on their use for Physics education. Furthermore, the data sets released can be a reference point for future research and educational domain tasks such as . and ..
44#
發(fā)表于 2025-3-29 04:17:20 | 只看該作者
45#
發(fā)表于 2025-3-29 10:02:48 | 只看該作者
GEC-DCL: Grammatical Error Correction Model with?Dynamic Context Learning for?Paragraphs and Scholar we substantiate the efficacy of our approach, achieving substantial F. score enhancements: 77% increase, 19.61% boost, and 10.49% rise respectively, compared to state-of-the-art models. Furthermore, we contrast our model’s performance with LLaMA’s GEC capabilities. We extend our investigation to sc
46#
發(fā)表于 2025-3-29 12:02:37 | 只看該作者
A Deep Learning Emotion Classification Framework for?Low Resource Languageslassification model is selected through experimentation that compares machine learning models and pre-trained models. Machine learning and deep learning models are SVM, Logistic Regression, Random Forest, CNN, BiLSTM, and CNN+BiLSTM. The pre-trained models, mBERT, IndicBERT, and a hybrid model, mBER
47#
發(fā)表于 2025-3-29 17:32:05 | 只看該作者
48#
發(fā)表于 2025-3-29 21:31:51 | 只看該作者
49#
發(fā)表于 2025-3-30 01:30:45 | 只看該作者
50#
發(fā)表于 2025-3-30 04:32:45 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
绵阳市| 托里县| 德令哈市| 双鸭山市| 宜都市| 铁岭市| 武隆县| 改则县| 富蕴县| 吉木乃县| 横峰县| 察隅县| 东乡族自治县| 玉林市| 壶关县| 务川| 海原县| 吴忠市| 罗田县| 朝阳市| 乌鲁木齐市| 察雅县| 潮州市| 吴江市| 读书| 灵山县| 湘西| 南阳市| 乌鲁木齐市| 菏泽市| 和硕县| 聂拉木县| 准格尔旗| 广南县| 左权县| 石林| 西城区| 石台县| 杭州市| 洞头县| 微博|