找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Technology and Applications; First National Confe Wenguang Chen,Guisheng Yin,Zeguang Lu Conference proceedings 2016 Springer Scien

[復(fù)制鏈接]
查看: 19463|回復(fù): 63
樓主
發(fā)表于 2025-3-21 17:22:01 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Big Data Technology and Applications
期刊簡稱First National Confe
影響因子2023Wenguang Chen,Guisheng Yin,Zeguang Lu
視頻videohttp://file.papertrans.cn/186/185669/185669.mp4
發(fā)行地址Includes supplementary material:
學(xué)科分類Communications in Computer and Information Science
圖書封面Titlebook: Big Data Technology and Applications; First National Confe Wenguang Chen,Guisheng Yin,Zeguang Lu Conference proceedings 2016 Springer Scien
影響因子.This bookconstitutes the refereed proceedings of the First National Conference on BigData Technology and Applications, BDTA 2015, held in Harbin, China, in December2015...The 26revised papers presented were carefully reviewed and selected from numeroussubmissions. The papers address issues such as the storage technology of Big Data;analysis of Big Data and data mining; visualization of Big Data; the parallelcomputing framework under Big Data; the architecture and basic theory of BigData; collection and preprocessing of Big Data; innovative applications in someareas, such as internet of things and cloud computing..
Pindex Conference proceedings 2016
The information of publication is updating

書目名稱Big Data Technology and Applications影響因子(影響力)




書目名稱Big Data Technology and Applications影響因子(影響力)學(xué)科排名




書目名稱Big Data Technology and Applications網(wǎng)絡(luò)公開度




書目名稱Big Data Technology and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Big Data Technology and Applications被引頻次




書目名稱Big Data Technology and Applications被引頻次學(xué)科排名




書目名稱Big Data Technology and Applications年度引用




書目名稱Big Data Technology and Applications年度引用學(xué)科排名




書目名稱Big Data Technology and Applications讀者反饋




書目名稱Big Data Technology and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:58:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:03:10 | 只看該作者
地板
發(fā)表于 2025-3-22 05:17:44 | 只看該作者
Design and Implementation of a Project Management System Based on Product Data Management on the Bap of the Baidu cloud computing platform. It can provide a reference for small- and medium-sized enterprises seeking to implement information systems with high efficiency and at low cost in the age of big data.
5#
發(fā)表于 2025-3-22 11:37:34 | 只看該作者
Using Class Based Document Frequency to Select Features in Text Classification,ion metric, we, therefore, propose a class based document frequency strategy to further refine the original DF to some extent. Extensive experiments on three text classification datasets demonstrate the effectiveness of the proposed measures.
6#
發(fā)表于 2025-3-22 16:38:46 | 只看該作者
7#
發(fā)表于 2025-3-22 17:43:35 | 只看該作者
https://doi.org/10.1007/978-3-319-64403-5ccessing operation under any different storage strategies and parameters. Simulation experiments shows that strategies proposed in this paper saves 20?%–35?% energy than traditional HDFS and 99.9?% responding time of reading files will not be affected, with an average of 0.008?%–0.036?% time delay.
8#
發(fā)表于 2025-3-23 00:31:19 | 只看該作者
Cybersemiotics in the Information Age,oothing (SES), Double exponential smoothing (DES), Triple exponential smoothing (TES) and Autoregressive integrated moving average (ARIMA) are used in our experiments. Our experimental results suggest that we can achieve good forecast result for 135?min in future.
9#
發(fā)表于 2025-3-23 02:05:03 | 只看該作者
Cyclotomic Fields of Class Number One,p of the Baidu cloud computing platform. It can provide a reference for small- and medium-sized enterprises seeking to implement information systems with high efficiency and at low cost in the age of big data.
10#
發(fā)表于 2025-3-23 08:26:52 | 只看該作者
The CCR Model and Production Correspondence,ion metric, we, therefore, propose a class based document frequency strategy to further refine the original DF to some extent. Extensive experiments on three text classification datasets demonstrate the effectiveness of the proposed measures.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 07:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长春市| 宁波市| 郧西县| 即墨市| 蒙阴县| 五华县| 冕宁县| 凯里市| 扶绥县| 政和县| 卢湾区| 土默特左旗| 屏南县| 蓬莱市| 顺义区| 乌兰县| 东乌珠穆沁旗| 从化市| 东至县| 抚顺市| 繁昌县| 尖扎县| 光山县| 萨嘎县| 三明市| 谷城县| 青河县| 许昌县| 澄江县| 神池县| 芜湖市| 九寨沟县| 东乌| 徐水县| 霍山县| 额尔古纳市| 海城市| 富蕴县| 什邡市| 合江县| 淳安县|