找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Technologies and Applications; 11th and 12th EAI In Rui Hou,Huan Huang,Hossam M. Zawbaa Conference proceedings 2023 ICST Institute

[復(fù)制鏈接]
樓主: deflate
41#
發(fā)表于 2025-3-28 15:50:07 | 只看該作者
42#
發(fā)表于 2025-3-28 19:09:24 | 只看該作者
Outlook: Beyond the Conformal Group, system is, and the more likely it is for covert corruption to proliferate. Only by enhancing audit mode, ensuring data quality, increasing audit efficiency, and reducing audit risk using blockchain technology can the corruption of executives of state-owned companies be effectively stopped.
43#
發(fā)表于 2025-3-29 02:10:16 | 只看該作者
44#
發(fā)表于 2025-3-29 06:11:23 | 只看該作者
Introduction to Constraint Databasesprocedural score feedback and learning outcome. (3) time allocation for non-evaluative tasks does not mediate the relationship between procedural score feedback and learning outcome. The study suggests some potentially effective measures for MOOC teachers and developers to provide learners with proc
45#
發(fā)表于 2025-3-29 07:30:08 | 只看該作者
Aggregation and Negation Queries,a on the number of the user’s followers and retweet potential in order to generate the user’s impact factor. Experiments are performed using data collected from Twitter and the results show the effectiveness of the proposed approach in identifying fake news spreaders.
46#
發(fā)表于 2025-3-29 11:34:55 | 只看該作者
47#
發(fā)表于 2025-3-29 19:22:33 | 只看該作者
48#
發(fā)表于 2025-3-29 20:59:08 | 只看該作者
Using Requirements Clustering to Discover Dependent Requirements for Hidden Impact Analysisroactively strengthen “Measuring Change Ripple Effect”, Third, new ideas need to be discussed and future research explored. We have used Natural Language Processing (NLP) and Similarity Models to support the model.
49#
發(fā)表于 2025-3-30 00:41:46 | 只看該作者
50#
發(fā)表于 2025-3-30 05:12:34 | 只看該作者
A Comparative Study for Anonymizing Datasets with Multiple Sensitive Attributes and Multiple Recordsility and privacy, for this data while reducing information loss and misuse. The objective of this paper is to use different methods and different anonymization algorithms, like the 1:m-generalization algorithm and Mondrian, and compare them to show which of them maintains data privacy and high util
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁波市| 合肥市| 连云港市| 凌海市| 长顺县| 于田县| 石渠县| 张家港市| 吉林省| 亳州市| 淮阳县| 汨罗市| 孟津县| 钟山县| 库伦旗| 葫芦岛市| 伊宁市| 安阳市| 常德市| 潜山县| 崇义县| 太湖县| 栾城县| 合作市| 平凉市| 河南省| 温州市| 上林县| 昌平区| 新蔡县| 峨眉山市| 商城县| 鸡泽县| 寻乌县| 周至县| 文登市| 柞水县| 井陉县| 镇宁| 东宁县| 兰溪市|