找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Technologies and Applications; 10th EAI Internation Zeng Deze,Huan Huang,Naveen Chilamkurti Conference proceedings 2021 ICST Insti

[復(fù)制鏈接]
查看: 44390|回復(fù): 55
樓主
發(fā)表于 2025-3-21 18:23:34 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Big Data Technologies and Applications
期刊簡稱10th EAI Internation
影響因子2023Zeng Deze,Huan Huang,Naveen Chilamkurti
視頻videohttp://file.papertrans.cn/186/185663/185663.mp4
學(xué)科分類Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engi
圖書封面Titlebook: Big Data Technologies and Applications; 10th EAI Internation Zeng Deze,Huan Huang,Naveen Chilamkurti Conference proceedings 2021 ICST Insti
影響因子This book constitutes the refereed post-conference proceedings of the 10.th. International Conference on Big Data Technologies and Applications, BDTA 2020, and the 13.th. International Conference on Wireless Internet, WiCON 2020, held in December 2020. Due to COVID-19 pandemic the conference was held virtually.. The 9 full papers of BDTA 2020 were selected from 22 submissions and present all big data technologies, such as storage, search and management.. WiCON 2020 received 18 paper submissions and after the reviewing process 5 papers were accepted. The main topics include wireless and communicating networks, wireless communication security, green wireless network architectures and IoT based applications..
Pindex Conference proceedings 2021
The information of publication is updating

書目名稱Big Data Technologies and Applications影響因子(影響力)




書目名稱Big Data Technologies and Applications影響因子(影響力)學(xué)科排名




書目名稱Big Data Technologies and Applications網(wǎng)絡(luò)公開度




書目名稱Big Data Technologies and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Big Data Technologies and Applications被引頻次




書目名稱Big Data Technologies and Applications被引頻次學(xué)科排名




書目名稱Big Data Technologies and Applications年度引用




書目名稱Big Data Technologies and Applications年度引用學(xué)科排名




書目名稱Big Data Technologies and Applications讀者反饋




書目名稱Big Data Technologies and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:24:02 | 只看該作者
https://doi.org/10.1007/978-3-319-53103-8different time nodes based on aggregate data and sequence data. The experimental results show that sequence data is more effective than aggregate data to predict learning results. The prediction AUC of RF model on sequence data is 0.77 at the lowest and 0.83 at the highest, the prediction AUC of CAR
板凳
發(fā)表于 2025-3-22 03:07:13 | 只看該作者
地板
發(fā)表于 2025-3-22 06:02:36 | 只看該作者
https://doi.org/10.1007/978-1-349-08039-7ditional sophisticated features, while also new techniques and tools are frequently introduced as a result of the undergoing research activities. Nevertheless, despite the large efforts and investments on research and innovation, the Big Data technologies introduce also a number of challenges to its
5#
發(fā)表于 2025-3-22 12:02:43 | 只看該作者
6#
發(fā)表于 2025-3-22 14:11:27 | 只看該作者
The Vicinity of the Critical Point,or Machine (SVM) for improving performance of activity recognition. We also applied feature selection method to the collected data to decrease time complexity and increase the performance. Many experiments are conducted in this work to evaluate performance of the presented technique with human activ
7#
發(fā)表于 2025-3-22 20:23:51 | 只看該作者
8#
發(fā)表于 2025-3-23 01:00:20 | 只看該作者
9#
發(fā)表于 2025-3-23 03:13:17 | 只看該作者
Constructing Knowledge Graph for Prognostics and Health Management of On-board Train Control System nabled training models, which reveal the distribution of the feature importance and quantitatively evaluate the fault correlation of all related features. The presented scheme is demonstrated by a big data platform with incremental field data sets from railway operation process. Case study results s
10#
發(fā)表于 2025-3-23 05:38:16 | 只看該作者
Early Detecting the At-risk Students in Online Courses Based on Their Behavior Sequencesdifferent time nodes based on aggregate data and sequence data. The experimental results show that sequence data is more effective than aggregate data to predict learning results. The prediction AUC of RF model on sequence data is 0.77 at the lowest and 0.83 at the highest, the prediction AUC of CAR
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淳安县| 龙山县| 抚顺市| 临湘市| 阜阳市| 蕲春县| 凤台县| 隆昌县| 贺州市| 托克托县| 万宁市| 泾源县| 黄梅县| 新乡县| 万山特区| 元氏县| 普宁市| 泸定县| 定襄县| 尤溪县| 福州市| 土默特左旗| 柳州市| 同江市| 永清县| 通道| 高雄市| 闻喜县| 榆林市| 那曲县| 县级市| 雅安市| 巴楚县| 恩平市| 古田县| 榆林市| 宁晋县| 西宁市| 淮滨县| 左权县| 安福县|