找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Technologies and Applications; 13th EAI Internation Zhiyuan Tan,Yulei Wu,Min Xu Conference proceedings 2024 ICST Institute for Com

[復(fù)制鏈接]
樓主: legerdemain
11#
發(fā)表于 2025-3-23 09:49:44 | 只看該作者
An Auditable Framework for Evidence Sharing and Management Using Smart Lockers and Distributed Techn File System (IPFS). The system incorporates Hyperledger Fabric blockchain for immutability and tamper-proof record keeping and employs cryptographic measures to protect the confidentiality of shared and stored evidence. IPFS is employed for secure and efficient storage of digital evidence, while sm
12#
發(fā)表于 2025-3-23 15:37:57 | 只看該作者
A Review of?the?Non-Fungible Tokens (NFT): Challenges and?Opportunities NFTs have the potential to hugely influence both the decentralised markets that exist now and the commercial possibilities that will arise in the future. While there is a wealth of information about NFTs accessible, NFTs are still in an early stage, and some potential obstacles need to be properly
13#
發(fā)表于 2025-3-23 22:04:53 | 只看該作者
Research on Preprocessing Process for Improved Image Generation Based on Contrast Enhancementove the quality of learning image data and achieve high performance. To address this, the paper proposes a contrast-enhanced image generation preprocessing process that can improve image quality and mitigate the effects of poor lighting conditions.
14#
發(fā)表于 2025-3-24 01:37:23 | 只看該作者
Conference proceedings 20242023, held in Edinburgh, United Kingdom, in August 2023.. The 8 full papers and 3 short papers of BDTA 2023 were selected from 23 submissions and present new advances and research results in the fields of big data technologies, collection and storage, big data management and retrieval, big data mini
15#
發(fā)表于 2025-3-24 04:46:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:32:36 | 只看該作者
17#
發(fā)表于 2025-3-24 12:42:59 | 只看該作者
18#
發(fā)表于 2025-3-24 16:35:55 | 只看該作者
Forest Fire Prediction Using Multi-Source Deep Learningdel was 0.856. The results showed that the multi-source model performed similarly to the best-performing single-source model (weather) with a 60% reduction in training data. The multi-source model had a negligible impact from the poor-performing single-source model (hydrometric).
19#
發(fā)表于 2025-3-24 22:55:34 | 只看該作者
20#
發(fā)表于 2025-3-25 03:10:40 | 只看該作者
1867-8211 s and present new advances and research results in the fields of big data technologies, collection and storage, big data management and retrieval, big data mining and approaches.978-3-031-52264-2978-3-031-52265-9Series ISSN 1867-8211 Series E-ISSN 1867-822X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
信丰县| 辰溪县| 富源县| 新和县| 扬州市| 象山县| 根河市| 隆化县| 威宁| 贵阳市| 平武县| 清新县| 泰宁县| 山阴县| 固安县| 绿春县| 花莲县| 贵州省| 合江县| 兴安盟| 玛纳斯县| 晋江市| 凤凰县| 安泽县| 芦山县| 平顺县| 边坝县| 宁河县| 永安市| 思茅市| 新田县| 潞西市| 社旗县| 天等县| 沭阳县| 中方县| 安塞县| 财经| 宁河县| 澳门| 屏边|