找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data SMACK; A Guide to Apache Sp Raul Estrada,Isaac Ruiz Book 2016 Raul Estrada and Isaac Ruiz 2016 Big Data.Scala.Akka.Apache Spark.Ap

[復制鏈接]
查看: 51673|回復: 42
樓主
發(fā)表于 2025-3-21 16:32:36 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Big Data SMACK
期刊簡稱A Guide to Apache Sp
影響因子2023Raul Estrada,Isaac Ruiz
視頻videohttp://file.papertrans.cn/186/185659/185659.mp4
發(fā)行地址The first book presenting the SMACK stack.A practical guide teaching how to incorporate big data.Covers the full stack of big data architecture, discussing the practical benefits of each technology
圖書封面Titlebook: Big Data SMACK; A Guide to Apache Sp Raul Estrada,Isaac Ruiz Book 2016 Raul Estrada and Isaac Ruiz 2016 Big Data.Scala.Akka.Apache Spark.Ap
影響因子.Learn how to integrate full-stack open source big data architecture and to choose the correct technology—Scala/Spark, Mesos, Akka, Cassandra, and Kafka—in every layer.?.Big data architecture is becoming a requirement for many different enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large data sets in a timely manner. In many cases now, organizations need more than one paradigm to perform efficient analyses...Big Data SMACK. explains each of the full-stack technologies and, more importantly, how to best integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples in every situation. This book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by every technology. It covers the six main concepts of big data architecture and how integrate, replace, and reinforce every layer:..The language: Scala.The engine: Spark (SQL, MLib, Streaming, GraphX).The container: Mesos, Docker.The view: Akka.The storage: Cassandra.The message broker: Kafka.......What You Will Learn:..Make big data architecture without using complex Greek
Pindex Book 2016
The information of publication is updating

書目名稱Big Data SMACK影響因子(影響力)




書目名稱Big Data SMACK影響因子(影響力)學科排名




書目名稱Big Data SMACK網(wǎng)絡公開度




書目名稱Big Data SMACK網(wǎng)絡公開度學科排名




書目名稱Big Data SMACK被引頻次




書目名稱Big Data SMACK被引頻次學科排名




書目名稱Big Data SMACK年度引用




書目名稱Big Data SMACK年度引用學科排名




書目名稱Big Data SMACK讀者反饋




書目名稱Big Data SMACK讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:50:19 | 只看該作者
ure, discussing the practical benefits of each technology.Learn how to integrate full-stack open source big data architecture and to choose the correct technology—Scala/Spark, Mesos, Akka, Cassandra, and Kafka—in every layer.?.Big data architecture is becoming a requirement for many different enterp
板凳
發(fā)表于 2025-3-22 02:15:43 | 只看該作者
地板
發(fā)表于 2025-3-22 05:41:54 | 只看該作者
5#
發(fā)表于 2025-3-22 10:39:03 | 只看該作者
Sequence Variation and Molecular Evolutiontion persistence; the sometimes neglected “data layer” will take on a new dimension when you have finished this chapter. It’s time to meet Apache Cassandra, a NoSQL database that provides high availability and scalability without compromising performance.
6#
發(fā)表于 2025-3-22 15:03:03 | 只看該作者
Storage: Apache Cassandration persistence; the sometimes neglected “data layer” will take on a new dimension when you have finished this chapter. It’s time to meet Apache Cassandra, a NoSQL database that provides high availability and scalability without compromising performance.
7#
發(fā)表于 2025-3-22 20:12:27 | 只看該作者
8#
發(fā)表于 2025-3-22 21:32:53 | 只看該作者
9#
發(fā)表于 2025-3-23 02:09:05 | 只看該作者
Testing Evolutionary HypothesesIf the previous chapter’s objective was to develop functional thinking, this chapter’s objective is to develop actor model thinking.
10#
發(fā)表于 2025-3-23 06:14:28 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
吴堡县| 连云港市| 肥西县| 双辽市| 望谟县| 浦东新区| 卫辉市| 万盛区| 观塘区| 呼和浩特市| 嘉义县| 房山区| 海淀区| 阿克| 三原县| 贵州省| 乌兰县| 许昌县| 庄河市| 巧家县| 福清市| 淳化县| 大港区| 兴安县| 伊金霍洛旗| 乃东县| 玉环县| 峨山| 晋江市| 永州市| 衡水市| 高阳县| 安徽省| 富锦市| 分宜县| 闽侯县| 泰宁县| 扶余县| 大港区| 班玛县| 晋中市|