找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Processing Using Spark in Cloud; Mamta Mittal,Valentina E. Balas,Raghvendra Kumar Book 2019 Springer Nature Singapore Pte Ltd. 20

[復(fù)制鏈接]
查看: 39921|回復(fù): 50
樓主
發(fā)表于 2025-3-21 16:42:12 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Big Data Processing Using Spark in Cloud
影響因子2023Mamta Mittal,Valentina E. Balas,Raghvendra Kumar
視頻videohttp://file.papertrans.cn/186/185658/185658.mp4
發(fā)行地址Describes the current landscape of big data processing and analysis in the cloud.Defines the underlying concepts of available analytical tools and techniques.Covers the complete data science workflow
學(xué)科分類Studies in Big Data
圖書封面Titlebook: Big Data Processing Using Spark in Cloud;  Mamta Mittal,Valentina E. Balas,Raghvendra Kumar Book 2019 Springer Nature Singapore Pte Ltd. 20
影響因子.The book describes the emergence of big data technologies and the role of Spark in the entire big data stack. It compares Spark and Hadoop and identifies the shortcomings of Hadoop that have been overcome by Spark. The book mainly focuses on the in-depth architecture of Spark and our understanding of Spark RDDs and how RDD complements big data’s immutable nature, and solves it with lazy evaluation, cacheable and type inference. It also addresses advanced topics in Spark, starting with the basics of Scala and the core Spark framework, and exploring Spark data frames, machine learning using Mllib, graph analytics using Graph X and real-time processing with Apache Kafka, AWS Kenisis, and Azure Event Hub. It then goes on to investigate Spark using PySpark and R. Focusing on the current big data stack, the book examines the interaction with current big data tools, with Spark being the core processing layer for all types of data..The book is intended for data engineers and scientistsworking on massive datasets and big data technologies in the cloud. In addition to industry professionals, it is helpful for aspiring data processing professionals and students working in big data processing
Pindex Book 2019
The information of publication is updating

書目名稱Big Data Processing Using Spark in Cloud影響因子(影響力)




書目名稱Big Data Processing Using Spark in Cloud影響因子(影響力)學(xué)科排名




書目名稱Big Data Processing Using Spark in Cloud網(wǎng)絡(luò)公開度




書目名稱Big Data Processing Using Spark in Cloud網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Big Data Processing Using Spark in Cloud被引頻次




書目名稱Big Data Processing Using Spark in Cloud被引頻次學(xué)科排名




書目名稱Big Data Processing Using Spark in Cloud年度引用




書目名稱Big Data Processing Using Spark in Cloud年度引用學(xué)科排名




書目名稱Big Data Processing Using Spark in Cloud讀者反饋




書目名稱Big Data Processing Using Spark in Cloud讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:41:41 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:46:35 | 只看該作者
Studies in Big Datahttp://image.papertrans.cn/b/image/185658.jpg
地板
發(fā)表于 2025-3-22 06:34:11 | 只看該作者
5#
發(fā)表于 2025-3-22 10:32:48 | 只看該作者
978-981-13-4448-0Springer Nature Singapore Pte Ltd. 2019
6#
發(fā)表于 2025-3-22 16:42:58 | 只看該作者
Michael Bonitz,Norman Horing,Patrick Ludwigation is immensely expanding inside each ten minutes and it is difficult to oversee it and it offers ascend to the term Big data. This paper depicts the enormous information and its difficulties alongside the advancements required to deal with huge data. This moreover portrays the conventional metho
7#
發(fā)表于 2025-3-22 17:52:10 | 只看該作者
8#
發(fā)表于 2025-3-22 23:32:02 | 只看該作者
9#
發(fā)表于 2025-3-23 04:53:55 | 只看該作者
Eigenspaces and Regular Elements,he hardware, software, and systems. Cloud Computing allows healthy and wider efficient computing services in terms of providing centralized services of storage, applications, operating systems, processing, and bandwidth. Cloud Computing is a type of architecture which helps in promotion of scalable
10#
發(fā)表于 2025-3-23 08:00:37 | 只看該作者
https://doi.org/10.1007/978-3-319-51744-5ata generation begins with the fact that there is vast information to capture and store. The rate of mounting of data on the Internet was one of the important factors in giving rise to the concept of big data. However, it is related to Internet but its existence is due to growing unstructured data w
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中山市| 安吉县| 乡宁县| 平泉县| 乌拉特前旗| 巫溪县| 大宁县| 五台县| 上蔡县| 民和| 渭南市| 泸定县| 家居| 河东区| 陇川县| 黑山县| 古浪县| 林口县| 含山县| 横峰县| 友谊县| 洪湖市| 武胜县| 拉萨市| 临高县| 崇左市| 莒南县| 衡山县| 信宜市| 枣庄市| 漯河市| 惠州市| 来安县| 湘西| 曲周县| 成武县| 汶上县| 兴海县| 竹北市| 连南| 台山市|