找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Preprocessing; Enabling Smart Data Julián Luengo,Diego García-Gil,Francisco Herrera Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
樓主: 萬圣節(jié)
11#
發(fā)表于 2025-3-23 11:15:17 | 只看該作者
12#
發(fā)表于 2025-3-23 14:40:11 | 只看該作者
13#
發(fā)表于 2025-3-23 18:47:43 | 只看該作者
Introduction to Compiler Designramework that implemented the MapReduce paradigm. Apache Spark appeared a few years later improving the Hadoop Ecosystem. Similarly, Apache Flink appeared in the last years for tackling the Big Data streaming problem. However, as these frameworks were created for dealing with huge amounts of data, m
14#
發(fā)表于 2025-3-24 02:02:04 | 只看該作者
https://doi.org/10.1007/978-0-85729-829-4nowledge and insights we can extract from it. Referring to the well-known “garbage in, garbage out” principle, accumulating vast amounts of raw data will not guarantee quality results, but poor knowledge. In this last chapter we aim to provide a couple of final thoughts on the importance of data pre
15#
發(fā)表于 2025-3-24 05:23:49 | 只看該作者
Book 2020st relevant proposed solutions. This book illustrates actual implementations of algorithms that helps the reader deal with these problems.?.This book stresses the gap that exists between big, raw data and the requirements of quality data that businesses are demanding. This is called Smart Data, and
16#
發(fā)表于 2025-3-24 09:17:27 | 只看該作者
Introduction to Compiler Designitical impact in the learning process, as most learners suppose that the data is complete. However, in this Big Data era, the massive growth in the scale of the data poses a challenge to traditional proposals created to tackle noise and missing values, as they have difficulties coping with such a large amount of data.
17#
發(fā)表于 2025-3-24 13:23:31 | 只看該作者
Introduction to Compiler Designthe early proposals on dealing with parallel discretization. Then, we present some distributed solutions capable of scaling on large-scale datasets. We finish with a study of the discretization methods capable of dealing with Big Data streams.
18#
發(fā)表于 2025-3-24 18:55:39 | 只看該作者
19#
發(fā)表于 2025-3-24 20:21:25 | 只看該作者
20#
發(fā)表于 2025-3-25 01:33:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
棋牌| 娄烦县| 策勒县| 昭平县| 长泰县| 鸡泽县| 永定县| 久治县| 舒城县| 河源市| 延川县| 永靖县| 稻城县| 贵溪市| 嵩明县| 宁乡县| 兴安盟| 澄迈县| 河西区| 济南市| 通山县| 普格县| 西宁市| 页游| 南投县| 土默特右旗| 即墨市| 金门县| 江都市| 松江区| 平遥县| 鹿泉市| 时尚| 武山县| 屏东市| 旬邑县| 自贡市| 枣阳市| 宜春市| 大同市| 安乡县|