找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Integration Theory; Theory and Methods o Zoran Majki? Textbook 2014 Springer International Publishing Switzerland 2014 Algebras fo

[復(fù)制鏈接]
樓主: 游牧
31#
發(fā)表于 2025-3-26 22:02:25 | 只看該作者
The Properties of DB Category,It is demonstrated that . is a V-category enriched over itself..Finally, we present the inductive principle for objects and the coinductive principle for arrows in the . category, and demonstrate that its “computation” Kleisly category is embedded into the database . category by a faithful forgetful functor.
32#
發(fā)表于 2025-3-27 01:30:35 | 只看該作者
1868-0941 atabases, universal algebra considerations and algebraic lattices of the databases; explores the relationship of the database weak monoidal topos w.r.t. intuitionistic logic.978-3-319-35539-9978-3-319-04156-8Series ISSN 1868-0941 Series E-ISSN 1868-095X
33#
發(fā)表于 2025-3-27 06:17:59 | 只看該作者
Introduction to C++ Programming and Graphicshe integrity-constraints for schemas. This representation is used to define the database mapping sketches (small categories), based on the fact that each schema has an identity arrow (mapping) and that the mapping-arrows satisfy the associative low for the composition of them.
34#
發(fā)表于 2025-3-27 09:51:21 | 只看該作者
Introduction to C++ Programming and Graphicsfunctions and our universe must include the infinite set of distinct Skolem constants (for recursive schema-mapping or schema integrity constraints), our logic is then an intermediate or superintuitionistic logic in which the weak excluded middle formula ?.∨??. is valid. Thus, this weak monoidal top
35#
發(fā)表于 2025-3-27 14:46:15 | 只看該作者
Composition of Schema Mappings: Syntax and Semantics,he integrity-constraints for schemas. This representation is used to define the database mapping sketches (small categories), based on the fact that each schema has an identity arrow (mapping) and that the mapping-arrows satisfy the associative low for the composition of them.
36#
發(fā)表于 2025-3-27 20:27:16 | 只看該作者
Weak Monoidal , Topos,functions and our universe must include the infinite set of distinct Skolem constants (for recursive schema-mapping or schema integrity constraints), our logic is then an intermediate or superintuitionistic logic in which the weak excluded middle formula ?.∨??. is valid. Thus, this weak monoidal top
37#
發(fā)表于 2025-3-28 01:48:37 | 只看該作者
Introduction and Technical Preliminaries,n order to render this monograph more self-contained. It is important also due to the fact that usually the database experts do a lot with logics and relational algebras, but much less with programming languages (their denotational and operational semantics) and still much less with categorial seman
38#
發(fā)表于 2025-3-28 04:27:21 | 只看該作者
39#
發(fā)表于 2025-3-28 06:19:51 | 只看該作者
Definition of DB Category,ppings. The objects of this category are the instance-databases (composed of the relational tables and an empty relation ⊥) and every arrow is just a set of functions (mapping-interpretations defined in Chap.?.) from the set of relations of the source object (a source database) into a particular rel
40#
發(fā)表于 2025-3-28 13:26:22 | 只看該作者
Functorial Semantics for Database Schema Mappings,e applications of this theory to data integration/exchange systems with an example for query-rewriting in GAV data integration system with (foreign) key integrity constraints, based on a coalgebra semantics. In the final section, a fixpoint operator for an infinite canonical solution in data integra
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
疏勒县| 河曲县| 大庆市| 于都县| 荔波县| 且末县| 凭祥市| 马鞍山市| 凤山市| 静宁县| 青岛市| 龙胜| 甘孜县| 张家川| 奉化市| 九江县| 什邡市| 化隆| 城市| 内乡县| 定安县| 沙坪坝区| 桦川县| 西乌珠穆沁旗| 大港区| 馆陶县| 高雄县| 固镇县| 顺义区| 独山县| 太仓市| 湟源县| 驻马店市| 当涂县| 那坡县| 怀仁县| 长宁县| 宜黄县| 巧家县| 芜湖市| 茶陵县|