找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Imperatives; Enterprise Big Data Soumendra Mohanty,Madhu Jagadeesh,Harsha Srivatsa Book 2013 Soumendra Mohanty and Madhu Jagadees

[復(fù)制鏈接]
查看: 18095|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:33:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Big Data Imperatives
期刊簡(jiǎn)稱(chēng)Enterprise Big Data
影響因子2023Soumendra Mohanty,Madhu Jagadeesh,Harsha Srivatsa
視頻videohttp://file.papertrans.cn/186/185643/185643.mp4
發(fā)行地址Vendors and platforms agnostic there by bringing in deep understanding of key areas viz.,.Big data platforms.Implementation best practices, etc;.Numerous industry use cases about big data and its impl
圖書(shū)封面Titlebook: Big Data Imperatives; Enterprise Big Data  Soumendra Mohanty,Madhu Jagadeesh,Harsha Srivatsa Book 2013 Soumendra Mohanty and Madhu Jagadees
影響因子.Big Data Imperatives., focuses on resolving the key questions on everyone’s mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications?.Big data is emerging from the realm of one-off projects to mainstream business adoption; however, the real value of big data is not in the overwhelming size of it, but more in its effective use..This book addresses the following big data characteristics:. .Very large, distributed aggregations of loosely structured data – often incomplete and inaccessible . .Petabytes/Exabytes of data . .Millions/billions of people providing/contributing to the context behind the data . .Flat schema‘s with few complex interrelationships . .Involves time-stamped events . .Made up of incomplete data . .Includes connections between data elements that must be probabilistically inferred .Big Data Imperatives.?explains ‘what big data can do‘. It can batch process millions and billions of records both unstructured and structured much faster and cheaper. Big data analytics provide a platform to merge all analysis w
Pindex Book 2013
The information of publication is updating

書(shū)目名稱(chēng)Big Data Imperatives影響因子(影響力)




書(shū)目名稱(chēng)Big Data Imperatives影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Big Data Imperatives網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Big Data Imperatives網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Big Data Imperatives被引頻次




書(shū)目名稱(chēng)Big Data Imperatives被引頻次學(xué)科排名




書(shū)目名稱(chēng)Big Data Imperatives年度引用




書(shū)目名稱(chēng)Big Data Imperatives年度引用學(xué)科排名




書(shū)目名稱(chēng)Big Data Imperatives讀者反饋




書(shū)目名稱(chēng)Big Data Imperatives讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:43:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:56:24 | 只看該作者
地板
發(fā)表于 2025-3-22 05:43:44 | 只看該作者
5#
發(fā)表于 2025-3-22 09:12:48 | 只看該作者
J. C. E. Underwood MD, MRCPath.Big data is baffling, and analytics are complex. Together, big data analytics make a difficult and complex undertaking largely because technology architectures and methodologies are immature.
6#
發(fā)表于 2025-3-22 15:41:44 | 只看該作者
7#
發(fā)表于 2025-3-22 20:52:39 | 只看該作者
8#
發(fā)表于 2025-3-22 21:16:44 | 只看該作者
https://doi.org/10.1007/978-1-4613-3387-6ent of mainframes to client server to ERP and now everything digital. For years the overwhelming amount of data produced was deemed useless. But data has always been an integral part of every enterprise, big or small. As the importance and value of data to an enterprise became evident, so did the pr
9#
發(fā)表于 2025-3-23 02:51:29 | 只看該作者
etc;.Numerous industry use cases about big data and its impl.Big Data Imperatives., focuses on resolving the key questions on everyone’s mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it
10#
發(fā)表于 2025-3-23 08:28:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 13:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平南县| 三门县| 洛川县| 栾川县| 顺义区| 泽普县| 鸡东县| 克什克腾旗| 焉耆| 江北区| 宁晋县| 根河市| 连江县| 丰顺县| 鹿邑县| 石门县| 莱芜市| 乐山市| 岗巴县| 彭山县| 陆丰市| 滦平县| 中超| 华阴市| 宜宾县| 讷河市| 玛纳斯县| 萨迦县| 六安市| 赞皇县| 慈溪市| 辛集市| 梅州市| 屏山县| 南投市| 盘锦市| 东源县| 营山县| 射洪县| 黄山市| 兰考县|