找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Benchmarks, Performance Optimization, and Emerging Hardware; 4th and 5th Workshop Jianfeng Zhan,Rui Han,Chuliang Weng Conference p

[復(fù)制鏈接]
樓主: Deflated
11#
發(fā)表于 2025-3-23 13:23:28 | 只看該作者
Tuning Hadoop Map Slot Value Using CPU Metrica large number of companies who have adopted Hadoop for their business purposes. One of the configuration parameters that influences the resource allocation and thus the performance of a Hadoop application is map slot value (MSV). MSV determines the number of map tasks that run concurrently on a nod
12#
發(fā)表于 2025-3-23 17:35:37 | 只看該作者
A Study of SQL-on-Hadoop Systems, providing SQL analysis functionality to the big data resided in HDFS becomes more and more important. Hive is a pioneer system that support SQL-like analysis to the data in HDFS. However, the performance of Hive is not satisfactory for many applications. This leads to the quick emergence of dozens
13#
發(fā)表于 2025-3-23 20:24:00 | 只看該作者
14#
發(fā)表于 2025-3-24 00:03:15 | 只看該作者
15#
發(fā)表于 2025-3-24 04:16:00 | 只看該作者
Efficient HTTP Based I/O on Very Large Datasets for High Performance Computing with the Libdavix Libprotocols are highly optimized for high throughput on very large datasets, multi-streams, high availability, low latency and efficient parallel I/O. The purpose of this paper is to describe how we have adapted a generic protocol, the Hyper Text Transport Protocol (HTTP) to make it a competitive alte
16#
發(fā)表于 2025-3-24 09:56:50 | 只看該作者
DSIMBench: A Benchmark for Microarray Data Using Rthe tool kits are suited for a specific environment. In this paper we propose DSIMBench, a benchmark containing two classic microarray analysis functions with eight different parallel R workflows, and evaluate the benchmark in the IC Cloud testbed platform.
17#
發(fā)表于 2025-3-24 13:25:49 | 只看該作者
18#
發(fā)表于 2025-3-24 16:03:22 | 只看該作者
19#
發(fā)表于 2025-3-24 20:50:05 | 只看該作者
https://doi.org/10.1007/978-94-017-6798-9Sort, Kmeans and PageRank. We conduct detailed deep analysis of their I/O characteristics, including disk read/write bandwidth, I/O devices utilization, average waiting time of I/O requests, and average size of I/O requests, which act as a guide to design highperformance, low-power and cost-aware big data storage systems.
20#
發(fā)表于 2025-3-25 02:16:22 | 只看該作者
Generalizations of Dirichlet Convolution,7?% and 50?% speedups compared with those of Hadoop and Spark, respectively. Most of the benefits come from the high-efficiency communication mechanisms in DataMPI. We also notice that the resource (CPU, memory, disk and network I/O) utilizations of DataMPI are also more efficient than those of the other two frameworks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长沙县| 桓台县| 内乡县| 富民县| 昌都县| 景德镇市| 南投县| 普洱| 榆林市| 临海市| 安康市| 乾安县| 双牌县| 祁连县| 四子王旗| 商城县| 南昌市| 黔南| 淮滨县| 南开区| 公安县| 常熟市| 农安县| 慈利县| 枞阳县| 永吉县| 嘉善县| 巩留县| 武宁县| 射洪县| 浑源县| 孟州市| 普宁市| 新竹市| 潜山县| 凤台县| 乐业县| 焦作市| 遂昌县| 敖汉旗| 辛集市|