找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Benchmarking; 5th International Wo Tilmann Rabl,Kai Sachs,Hans-Arno Jacobson Conference proceedings 2015 Springer International Pu

[復制鏈接]
樓主: expenditure
41#
發(fā)表于 2025-3-28 16:37:38 | 只看該作者
https://doi.org/10.1007/978-1-4757-4067-7gas exploration and production, telecommunication, healthcare, agriculture, mining) and similarly in government (e.g., homeland security, smart cities, public transportation, accountable care). In developing several such applications over the years, we have come to realize that existing benchmarks f
42#
發(fā)表于 2025-3-28 19:24:36 | 只看該作者
https://doi.org/10.1007/978-0-387-76635-5cessing. In this paper, we propose a modified MapReduce architecture – MapReduce Agent (MRA) – that resolves those performance problems. MRA can reduce completion time, improve system utilization, and give better performance. MRA employs multi-connection which resolves error recovery with a Q-chaine
43#
發(fā)表于 2025-3-28 23:33:07 | 只看該作者
44#
發(fā)表于 2025-3-29 05:38:15 | 只看該作者
45#
發(fā)表于 2025-3-29 11:02:00 | 只看該作者
An Approach to Benchmarking Industrial Big Data Applicationsgas exploration and production, telecommunication, healthcare, agriculture, mining) and similarly in government (e.g., homeland security, smart cities, public transportation, accountable care). In developing several such applications over the years, we have come to realize that existing benchmarks f
46#
發(fā)表于 2025-3-29 11:26:35 | 只看該作者
The Emergence of Modified Hadoop Online-Based MapReduce Technology in Cloud Environmentscessing. In this paper, we propose a modified MapReduce architecture – MapReduce Agent (MRA) – that resolves those performance problems. MRA can reduce completion time, improve system utilization, and give better performance. MRA employs multi-connection which resolves error recovery with a Q-chaine
47#
發(fā)表于 2025-3-29 15:44:41 | 只看該作者
Towards Benchmarking IaaS and PaaS Clouds for Graph Analyticshallenge for the process of benchmarking data-intensive services, namely the inclusion of the data-processing algorithm in the system under test; this increases significantly the relevance of benchmarking results, albeit, at the cost of increased benchmarking duration.
48#
發(fā)表于 2025-3-29 22:52:29 | 只看該作者
49#
發(fā)表于 2025-3-30 01:20:12 | 只看該作者
Towards a Complete BigBench Implementationases. It was fully specified and completely implemented on the Hadoop stack. In this paper, we present updates on our development of a complete implementation on the Hadoop ecosystem. We will focus on the changes that we have made to data set, scaling, refresh process, and metric.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 07:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
海林市| 宿迁市| 乐都县| 昆明市| 枣庄市| 淳化县| 洪雅县| 静宁县| 丰都县| 星子县| 苏尼特右旗| 沙田区| 简阳市| 九江县| 屯昌县| 苍梧县| 隆化县| 策勒县| 霞浦县| 临洮县| 萍乡市| 日照市| 刚察县| 英吉沙县| 克山县| 喀喇| 蛟河市| 盐津县| 章丘市| 义马市| 天津市| 隆德县| 双城市| 东山县| 雷山县| 栾城县| 永修县| 厦门市| 焦作市| 洪洞县| 吴江市|