找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics in Genomics; Ka-Chun Wong Book 2016 Springer International Publishing Switzerland (Outside the USA) 2016 Big Data.Genom

[復制鏈接]
查看: 16657|回復: 53
樓主
發(fā)表于 2025-3-21 19:30:03 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Big Data Analytics in Genomics
影響因子2023Ka-Chun Wong
視頻videohttp://file.papertrans.cn/186/185621/185621.mp4
發(fā)行地址Treats both theoretical and practical aspects of scalable data analysis in genome research.Covers various applications in high impact problems, such as cancer genome analytics.Includes concrete cases
圖書封面Titlebook: Big Data Analytics in Genomics;  Ka-Chun Wong Book 2016 Springer International Publishing Switzerland (Outside the USA) 2016 Big Data.Genom
影響因子This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace. ?To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field..This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA. ?In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein
Pindex Book 2016
The information of publication is updating

書目名稱Big Data Analytics in Genomics影響因子(影響力)




書目名稱Big Data Analytics in Genomics影響因子(影響力)學科排名




書目名稱Big Data Analytics in Genomics網(wǎng)絡公開度




書目名稱Big Data Analytics in Genomics網(wǎng)絡公開度學科排名




書目名稱Big Data Analytics in Genomics被引頻次




書目名稱Big Data Analytics in Genomics被引頻次學科排名




書目名稱Big Data Analytics in Genomics年度引用




書目名稱Big Data Analytics in Genomics年度引用學科排名




書目名稱Big Data Analytics in Genomics讀者反饋




書目名稱Big Data Analytics in Genomics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:37:29 | 只看該作者
Causal Inference and Structure Learning of Genotype–Phenotype Networks Using Genetic Variation–phenotype relations. We discuss four recent algorithms for genotype–phenotype network structure learning, namely (1) QTL-directed dependency graph, (2) QTL+Phenotype supervised orientation, (3) QTL-driven phenotype network, and (4) sparsity-aware maximum likelihood (SML).
板凳
發(fā)表于 2025-3-22 01:27:47 | 只看該作者
State-of-the-Art in Smith–Waterman Protein Database Search on HPC Platforms implementation. Additionally, as energy efficiency is becoming more important every day, we also survey performance/power consumption works. Finally, we give our view on the future of Smith–Waterman protein searches considering next generations of hardware architectures and its upcoming technologie
地板
發(fā)表于 2025-3-22 06:46:32 | 只看該作者
5#
發(fā)表于 2025-3-22 10:09:47 | 只看該作者
6#
發(fā)表于 2025-3-22 13:25:03 | 只看該作者
Perspectives of Machine Learning Techniques in Big Data Mining of Cancerional process of various genes identified by different genomics efforts. This might be useful to understand the modern trends and strategies of the fast evolving cancer genomics research. In the recent years, parallel, incremental, and multi-view machine learning algorithms have been proposed. This
7#
發(fā)表于 2025-3-22 17:33:29 | 只看該作者
8#
發(fā)表于 2025-3-23 00:44:40 | 只看該作者
9#
發(fā)表于 2025-3-23 02:09:49 | 只看該作者
A Bioinformatics Approach for Understanding Genotype–Phenotype Correlation in Breast Cancererns, which can assign known phenotypes to BC TN patients, focusing more on paired or more complicated nucleotide/gene mutational patterns, by using three machine learning methods: limitless arity multiple procedure (LAMP), decision trees, and hierarchical disjoint clustering. Association rules obta
10#
發(fā)表于 2025-3-23 06:56:32 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大关县| 敖汉旗| 公安县| 巴南区| 泰顺县| 吴忠市| 南阳市| 忻城县| 大关县| 巴青县| 永川市| 蓬溪县| 丰台区| 北宁市| 贵溪市| 朔州市| 呼伦贝尔市| 荣昌县| 双城市| 永年县| 柯坪县| 攀枝花市| 瑞丽市| 会同县| 开原市| 玛曲县| 泰安市| 乌什县| 嫩江县| 靖远县| 嘉禾县| 涿州市| 平湖市| 汉川市| 合阳县| 崇仁县| 奉节县| 南宁市| 宣汉县| 青川县| 沂水县|