找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics for Time-Critical Mobility Forecasting; From Raw Data to Tra George A. Vouros,Gennady Andrienko,David Scarlatti Book 202

[復(fù)制鏈接]
樓主: 閘門
11#
發(fā)表于 2025-3-23 11:18:53 | 只看該作者
The , Big Data Architecture for Mobility Analyticssources, this chapter presents the . architecture: Denoting “difference,” . emphasizes on the different processing requirements from loosely coupled components, which serve intertwined processing purposes, forming processing pipelines. The . architecture, being a generic architectural paradigm for r
12#
發(fā)表于 2025-3-23 15:45:17 | 只看該作者
13#
發(fā)表于 2025-3-23 20:41:26 | 只看該作者
https://doi.org/10.1007/978-1-4842-5380-9owledge. We describe four case studies in which distinct kinds of knowledge have been derived from trajectories of vessels and airplanes and related spatial and temporal data by human analytical reasoning empowered by interactive visual interfaces combined with computational operations.
14#
發(fā)表于 2025-3-23 23:54:51 | 只看該作者
15#
發(fā)表于 2025-3-24 05:42:35 | 只看該作者
https://doi.org/10.1007/978-1-349-22595-8 as from individual components and pipelines. The chapter presents the datAcron integrated system as a specific instantiation of the . architecture, aiming to satisfy requirements for big data mobility analytics, exploiting real-world mobility data for performing real-time and batch analysis tasks.
16#
發(fā)表于 2025-3-24 08:46:37 | 只看該作者
17#
發(fā)表于 2025-3-24 12:43:59 | 只看該作者
Modeling Mobility Data and Constructing Large Knowledge Graphs to Support Analytics: The datAcron Onrajectories, at multiple, interlinked levels of detail. In addition, we show that this ontology supports data transformations that are required for performing advanced analytics tasks, such as visual analytics, and we present use-case scenarios in the Air Traffic Management and maritime domains.
18#
發(fā)表于 2025-3-24 15:10:30 | 只看該作者
19#
發(fā)表于 2025-3-24 21:32:29 | 只看該作者
20#
發(fā)表于 2025-3-24 23:15:03 | 只看該作者
https://doi.org/10.1007/978-1-349-25536-8us sources for maritime surveillance is finally described, gathering 13 sources. This chapter concludes on the generation of specific datasets to be used for algorithms evaluation and comparison purposes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇康县| 崇明县| 辽中县| 濉溪县| 隆昌县| 凯里市| 黑山县| 全南县| 广宁县| 东阳市| 临漳县| 阜城县| 且末县| 海原县| 晋中市| 关岭| 吉木乃县| 泽普县| 昭觉县| 交口县| 察隅县| 安远县| 阿克苏市| 江陵县| 穆棱市| 澄城县| 临江市| 拉孜县| 蓬莱市| 平安县| 德化县| 阿坝县| 玛曲县| 隆尧县| 朝阳市| 新余市| 武隆县| 武强县| 苏尼特左旗| 麟游县| 柞水县|