找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics for Smart Transport and Healthcare Systems; Saeid Pourroostaei Ardakani,Ali Cheshmehzangi Book 2023 The Editor(s) (if a

[復(fù)制鏈接]
查看: 47675|回復(fù): 44
樓主
發(fā)表于 2025-3-21 17:03:56 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Big Data Analytics for Smart Transport and Healthcare Systems
影響因子2023Saeid Pourroostaei Ardakani,Ali Cheshmehzangi
視頻videohttp://file.papertrans.cn/186/185615/185615.mp4
發(fā)行地址Covers big data solutions in urban sustainability applications—mainly smart transportation and healthcare systems.Remains as the only book dealing with data analytic problems in urban sustainability a
學科分類Urban Sustainability
圖書封面Titlebook: Big Data Analytics for Smart Transport and Healthcare Systems;  Saeid Pourroostaei Ardakani,Ali Cheshmehzangi Book 2023 The Editor(s) (if a
影響因子.This book aims to introduce big data solutions in urban sustainability applications—mainly smart transportation and healthcare systems. It focuses on machine learning techniques and data processing approaches which have the capacity to handle/process huge, live, and complex datasets in real-time transportation and healthcare applications. For this, several state-of-the-art data processing approaches including data pre-processing, classification, regression, and clustering are introduced, tested, and evaluated to highlight their benefits and constraints where data is sensitive, real-time, and/or semi-structured..
Pindex Book 2023
The information of publication is updating

書目名稱Big Data Analytics for Smart Transport and Healthcare Systems影響因子(影響力)




書目名稱Big Data Analytics for Smart Transport and Healthcare Systems影響因子(影響力)學科排名




書目名稱Big Data Analytics for Smart Transport and Healthcare Systems網(wǎng)絡(luò)公開度




書目名稱Big Data Analytics for Smart Transport and Healthcare Systems網(wǎng)絡(luò)公開度學科排名




書目名稱Big Data Analytics for Smart Transport and Healthcare Systems被引頻次




書目名稱Big Data Analytics for Smart Transport and Healthcare Systems被引頻次學科排名




書目名稱Big Data Analytics for Smart Transport and Healthcare Systems年度引用




書目名稱Big Data Analytics for Smart Transport and Healthcare Systems年度引用學科排名




書目名稱Big Data Analytics for Smart Transport and Healthcare Systems讀者反饋




書目名稱Big Data Analytics for Smart Transport and Healthcare Systems讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:21:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:25:36 | 只看該作者
Big Data for Social Media Analysis During the COVID-19 Pandemic: An Emotion Analysis ?Based on Influhe COVID-19?pandemic. The study also investigates the relationship between COVID-19?trends or topics and public sentiments?on social networks. Machine learning?is used to verify the correlation between emotion on social media and the COVID-19?pandemic trends. The study concludes with a prediction mo
地板
發(fā)表于 2025-3-22 05:16:41 | 只看該作者
5#
發(fā)表于 2025-3-22 10:50:06 | 只看該作者
Robert Fantina,Andriy Storozhuk,Kamal Goyal, reaching an accuracy?of 99.89%. The preprocessing stage is proven to be vital for the performance of the LSTM?model. As a result, models using our preprocessed nine features are much more accurate on this freight transportation prediction task. Discussions are also raised to understand better frei
6#
發(fā)表于 2025-3-22 15:13:15 | 只看該作者
SEO Hub: Utilities and Toolsets,red with four classifiers, including Multilayer Perceptron, Decision Tree, Multinomial Logistics Regression, and LR one versus rest. According to the results, the Random Forest?model outperforms the benchmarks?regarding prediction accuracy. The findings of this chapter help optimise prediction accur
7#
發(fā)表于 2025-3-22 21:01:08 | 只看該作者
https://doi.org/10.1007/978-1-4842-1766-5he COVID-19?pandemic. The study also investigates the relationship between COVID-19?trends or topics and public sentiments?on social networks. Machine learning?is used to verify the correlation between emotion on social media and the COVID-19?pandemic trends. The study concludes with a prediction mo
8#
發(fā)表于 2025-3-22 22:09:04 | 只看該作者
9#
發(fā)表于 2025-3-23 02:57:42 | 只看該作者
Big Data-Enabled Time Series Analysis for Climate Change Analysis in Brazil : An Artificial Neural Nate data and analyze the changing climate trends in the same province. An artificial neural network is established as the model in this project to implement this objective. The performance shows that this model can complete this classification task.
10#
發(fā)表于 2025-3-23 07:11:55 | 只看該作者
Optimized Clustering Model for Healthcare Sentiments on Twitter: A Big Data Analysis Approache experiment results indicate that self-organized map model with the TF-IDF extraction method can achieve the best clustering accuracy. Moreover, the optimized model can have great potential to handle large-scale data in real practice.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 07:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华容县| 惠来县| 平和县| 永仁县| 绥化市| 双桥区| 天祝| 铜陵市| 涿鹿县| 抚宁县| 饶阳县| 昌图县| 柳河县| 洪洞县| 大名县| 江北区| 南郑县| 邛崃市| 大邑县| 辽宁省| 南华县| 沙河市| 聂拉木县| 凤凰县| 雷州市| 五寨县| 正宁县| 新昌县| 合作市| 进贤县| 达孜县| 淮安市| 襄樊市| 莎车县| 崇礼县| 湟源县| 哈密市| 青海省| 平阳县| 桦甸市| 都昌县|