找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics and Knowledge Discovery; 25th International C Robert Wrembel,Johann Gamper,Ismail Khalil Conference proceedings 2023 The

[復(fù)制鏈接]
查看: 48287|回復(fù): 58
樓主
發(fā)表于 2025-3-21 17:20:11 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Big Data Analytics and Knowledge Discovery
期刊簡稱25th International C
影響因子2023Robert Wrembel,Johann Gamper,Ismail Khalil
視頻videohttp://file.papertrans.cn/186/185609/185609.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Big Data Analytics and Knowledge Discovery; 25th International C Robert Wrembel,Johann Gamper,Ismail Khalil Conference proceedings 2023 The
影響因子.This book constitutes the proceedings of the 25th International Conference on Big Data Analytics and Knowledge Discovery, DaWaK 2023, which took place in Penang, Malaysia, during August 29-30, 2023. ..The 18 full papers presented together with 19 short papers were carefully reviewed and selected from a total of 83 submissions..They were organized in topical sections as follows: Data quality; advanced analytics and pattern discovery; machine learning; deep learning; and data management..
Pindex Conference proceedings 2023
The information of publication is updating

書目名稱Big Data Analytics and Knowledge Discovery影響因子(影響力)




書目名稱Big Data Analytics and Knowledge Discovery影響因子(影響力)學科排名




書目名稱Big Data Analytics and Knowledge Discovery網(wǎng)絡(luò)公開度




書目名稱Big Data Analytics and Knowledge Discovery網(wǎng)絡(luò)公開度學科排名




書目名稱Big Data Analytics and Knowledge Discovery被引頻次




書目名稱Big Data Analytics and Knowledge Discovery被引頻次學科排名




書目名稱Big Data Analytics and Knowledge Discovery年度引用




書目名稱Big Data Analytics and Knowledge Discovery年度引用學科排名




書目名稱Big Data Analytics and Knowledge Discovery讀者反饋




書目名稱Big Data Analytics and Knowledge Discovery讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:04:37 | 只看該作者
https://doi.org/10.1007/978-1-4842-6197-2luate the proposed method on synthetic and real-world datasets. While delivering comparable anomaly detection performance as the state-of-the-art approaches, STAD works more efficiently and provides extra interpretability.
板凳
發(fā)表于 2025-3-22 00:26:17 | 只看該作者
地板
發(fā)表于 2025-3-22 08:12:13 | 只看該作者
Bapi Chakraborty,Yashajeet Chowdhury for the user. Two algorithms are proposed to mine these patterns efficiently called HUGI (High Utility Gradual Itemsets mining), and HUGI-Merging, which extracts these patterns from both a negative and positive quantitative data separately and merges the obtained results. Experimental results show
5#
發(fā)表于 2025-3-22 09:44:59 | 只看該作者
6#
發(fā)表于 2025-3-22 16:22:50 | 只看該作者
https://doi.org/10.1007/978-1-4842-6998-5ndividual or group level. We conduct quantitative experiments and sensitivity studies on the real-world clinical PBC dataset. The results demonstrate that the proposed fairness notations and debiasing algorithm are capable of guaranteeing fairness in the presence of accurate prediction.
7#
發(fā)表于 2025-3-22 18:21:04 | 只看該作者
Introducing Ethereum and SolidityWe conduct exploratory analyses to understand our dataset’s characteristics and analyze useful patterns. We also experiment various state-of-the-art rumor classification methods to illustrate DAT@Z21’s usefulness, especially its visual components. Eventually, DAT@Z21 is available online at ..
8#
發(fā)表于 2025-3-22 21:23:13 | 只看該作者
EXOS: Explaining Outliers in Data Streamsorrelation within a data stream and across data streams to estimate the local context. The experiments using three real and two synthetic datasets show that, on average, EXOS achieves up to 49% higher F1 score and 29.6 times lower explanation time than existing algorithms.
9#
發(fā)表于 2025-3-23 05:27:20 | 只看該作者
10#
發(fā)表于 2025-3-23 09:25:00 | 只看該作者
Anomaly Detection in?Financial Transactions Via?Graph-Based Feature Aggregationsgate strategy to accurately preserve anomaly information, thereby alleviating the over-smoothing issue incurred by proximal feature aggregation. Our experiments comparing . against 10 baselines on real transaction datasets from PayPal demonstrate that . consistently outperforms all baselines in term
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屏东县| 阳信县| 彰武县| 姚安县| 石屏县| 扶沟县| 湾仔区| 彩票| 北流市| 砚山县| 航空| 平乡县| 罗城| 叙永县| 岳阳县| 中山市| 长汀县| 伽师县| 景宁| 于田县| 惠州市| 桐庐县| 南郑县| 永泰县| 彭阳县| 将乐县| 罗田县| 岗巴县| 哈密市| 台东市| 寻甸| 六安市| 安化县| 景洪市| 安宁市| 申扎县| 都江堰市| 策勒县| 个旧市| 池州市| 浦东新区|