找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics and Knowledge Discovery; 18th International C Sanjay Madria,Takahiro Hara Conference proceedings 2016 Springer Internati

[復(fù)制鏈接]
查看: 35344|回復(fù): 56
樓主
發(fā)表于 2025-3-21 17:43:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Big Data Analytics and Knowledge Discovery
期刊簡(jiǎn)稱18th International C
影響因子2023Sanjay Madria,Takahiro Hara
視頻videohttp://file.papertrans.cn/186/185608/185608.mp4
發(fā)行地址Includes supplementary material:
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Big Data Analytics and Knowledge Discovery; 18th International C Sanjay Madria,Takahiro Hara Conference proceedings 2016 Springer Internati
影響因子.This book constitutes the refereed proceedings of the 18th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2016, held in Porto, Portugal, September 2016...The 25 revised full papers presented were carefully reviewed and selected from 73 submissions. The papers are organized in topical sections on Mining Big Data, Applications of Big Data Mining, Big Data Indexing and Searching, Big Data Learning and Security, Graph Databases and Data Warehousing, Data Intelligence and Technology..
Pindex Conference proceedings 2016
The information of publication is updating

書目名稱Big Data Analytics and Knowledge Discovery影響因子(影響力)




書目名稱Big Data Analytics and Knowledge Discovery影響因子(影響力)學(xué)科排名




書目名稱Big Data Analytics and Knowledge Discovery網(wǎng)絡(luò)公開度




書目名稱Big Data Analytics and Knowledge Discovery網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Big Data Analytics and Knowledge Discovery被引頻次




書目名稱Big Data Analytics and Knowledge Discovery被引頻次學(xué)科排名




書目名稱Big Data Analytics and Knowledge Discovery年度引用




書目名稱Big Data Analytics and Knowledge Discovery年度引用學(xué)科排名




書目名稱Big Data Analytics and Knowledge Discovery讀者反饋




書目名稱Big Data Analytics and Knowledge Discovery讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:00:57 | 只看該作者
TopPI: An Efficient Algorithm for Item-Centric Mininghe . most frequent closed itemsets that item belongs to. For example, in our retail dataset, TopPI finds the itemset “nori seaweed, wasabi, sushi rice, soy sauce” that occurrs in only 133 store receipts out of 290 million. It also finds the itemset “milk, puff pastry”, that appears 152,991 times. Th
板凳
發(fā)表于 2025-3-22 01:07:18 | 只看該作者
A Rough Connectedness Algorithm for Mining Communities in Complex Networks Though community detection is a very active research area, most of the algorithms focus on detecting disjoint community structure. However, real-world complex networks do not necessarily have disjoint community structure. Concurrent overlapping and hierarchical communities are prevalent in real-wor
地板
發(fā)表于 2025-3-22 06:10:09 | 只看該作者
Mining User Trajectories from Smartphone Data Considering Data Uncertaintyh attention. Wi-Fi fingerprints are the sets of Wi-Fi scanning results recorded in mobile devices. However, the issue of data uncertainty is not considered in the proposed Wi-Fi positioning systems. In this paper, we propose a framework to find user trajectories from the Wi-Fi fingerprints recorded
5#
發(fā)表于 2025-3-22 11:29:42 | 只看該作者
A Heterogeneous Clustering Approach for Human Activity Recognitionormance of HAR system deployed on large-scale is often significantly lower than reported due to the sensor-, device-, and person-specific heterogeneities. In this work, we develop a new approach for clustering such heterogeneous data, represented as a time series, which incorporates different level
6#
發(fā)表于 2025-3-22 14:34:55 | 只看該作者
7#
發(fā)表于 2025-3-22 19:11:47 | 只看該作者
Mining Data Streams with Dynamic Confidence Intervalsg if its average success probability in the data stream reaches a user specified threshold. We propose an algorithm approximating the family of all interesting itemsets in a data stream. Using Chernoff bounds, our algorithm dynamically adjusts the confidence intervals of the candidate itemsets’ prob
8#
發(fā)表于 2025-3-23 00:36:46 | 只看該作者
Evaluating Top-K Approximate Patterns via Text Clusteringing algorithm, where the document features are derived from such patterns. Specifically, we exploit approximate patterns within the well-known . (Frequent Itemset-based Hierarchical Clustering) algorithm, which was originally designed to employ exact frequent itemsets to achieve a concise and inform
9#
發(fā)表于 2025-3-23 04:12:37 | 只看該作者
10#
發(fā)表于 2025-3-23 08:57:40 | 只看該作者
An Exhaustive Covering Approach to Parameter-Free Mining of Non-redundant Discriminative Itemsetshaustive covering, for finding non-redundant discriminative itemsets. ExCover outputs non-redundant patterns where each pattern covers best at least one positive transaction. With no control parameters limiting the search space, ExCover efficiently performs an exhaustive search for best-covering pat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 07:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤山市| 名山县| 黑山县| 镇坪县| 九寨沟县| 容城县| 门头沟区| 互助| 杨浦区| 岑溪市| 年辖:市辖区| 塔河县| 彰武县| 奉贤区| 清远市| 博白县| 丰宁| 高安市| 保定市| 哈尔滨市| 磐石市| 浦东新区| 仁怀市| 香格里拉县| 常德市| 繁昌县| 民勤县| 谢通门县| 信丰县| 建湖县| 社旗县| 武义县| 叶城县| 长子县| 固阳县| 乐山市| 吉木乃县| 泰宁县| 彭水| 肇东市| 若尔盖县|