找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics and Knowledge Discovery; 22nd International C Min Song,Il-Yeol Song,Ismail Khalil Conference proceedings 2020 Springer N

[復(fù)制鏈接]
樓主: miserly
41#
發(fā)表于 2025-3-28 16:09:32 | 只看該作者
42#
發(fā)表于 2025-3-28 22:16:55 | 只看該作者
43#
發(fā)表于 2025-3-28 23:43:16 | 只看該作者
High-Utility Interval-Based Sequencesdered point-based data where events occur instantaneously. However, in many application domains, events persist over intervals of time of varying lengths. Furthermore, traditional frameworks for sequential pattern mining assume all events have the same weight or utility. This simplifying assumption
44#
發(fā)表于 2025-3-29 03:20:51 | 只看該作者
Extreme-SAX: Extreme Points Based Symbolic Representation for Time Series Classification high dimensional, dimensionality reduction techniques have been proposed as an efficient approach to lower their dimensionality. One of the most popular dimensionality reduction techniques of time series data is the Symbolic Aggregate Approximation (SAX), which is inspired by algorithms from text m
45#
發(fā)表于 2025-3-29 08:23:46 | 只看該作者
46#
發(fā)表于 2025-3-29 13:05:12 | 只看該作者
47#
發(fā)表于 2025-3-29 17:59:39 | 只看該作者
48#
發(fā)表于 2025-3-29 21:11:38 | 只看該作者
Mining Attribute Evolution Rules in Dynamic Attributed Graphsfound in numerous domains, e.g., social network analysis. Several studies have been done on discovering patterns in dynamic attributed graphs to reveal how attribute(s) change over time. However, many algorithms restrict all attribute values in a pattern to follow the same trend (e.g. increase) and
49#
發(fā)表于 2025-3-30 02:51:52 | 只看該作者
Sustainable Development Goal Relational Modelling: Introducing the SDG-CAP Methodologysideration the potential relationships between time series associated with individual SDGs, unlike previous work where an independence assumption was made. The challenge is in identifying the existence of relationships and then using these relationships to make SDG attainment predictions. To this en
50#
發(fā)表于 2025-3-30 07:30:49 | 只看該作者
https://doi.org/10.1007/978-3-030-59065-9artificial intelligence; association rules; big data; clustering algorithms; computer hardware; computer
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰台区| 连平县| 佛山市| 布拖县| 长泰县| 古蔺县| 荥经县| 阿城市| 阳原县| 光山县| 乐东| 池州市| 嘉黎县| 靖江市| 本溪| 丽江市| 安仁县| 华阴市| 铁岭县| 金溪县| 信宜市| 桐城市| 淮阳县| 宿州市| 大宁县| 阳高县| 塔河县| 大洼县| 腾冲县| 乐平市| 灵璧县| 绥芬河市| 扎兰屯市| 抚顺市| 龙胜| 琼海市| 福州市| 酒泉市| 泾川县| 云霄县| 法库县|