找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics; Second International Vasudha Bhatnagar,Srinath Srinivasa Conference proceedings 2013 Springer International Publishing

[復制鏈接]
樓主: 去是公開
41#
發(fā)表于 2025-3-28 16:49:39 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/b/image/185599.jpg
42#
發(fā)表于 2025-3-28 20:24:03 | 只看該作者
Tutorial : Social Media Analyticsiew the state of the art as well as present new ideas on handling common research problems like Event Detection from Social Media, Summarization, Location Inference and fusing external data sources with social data. The tutorial would assume basic knowledge of Data Mining, Text Analytics and NLP Methods.
43#
發(fā)表于 2025-3-29 02:04:54 | 只看該作者
Conference proceedings 2013ysore, India, in December 2013. The 13 revised full papers were carefully reviewed and selected from 49 submissions and cover topics on mining social media data, perspectives on big data analysis, graph analysis, big data in practice.
44#
發(fā)表于 2025-3-29 04:19:35 | 只看該作者
45#
發(fā)表于 2025-3-29 10:21:50 | 只看該作者
John Kingdom,Philip Baker,Eve Blairiew the state of the art as well as present new ideas on handling common research problems like Event Detection from Social Media, Summarization, Location Inference and fusing external data sources with social data. The tutorial would assume basic knowledge of Data Mining, Text Analytics and NLP Methods.
46#
發(fā)表于 2025-3-29 12:16:55 | 只看該作者
https://doi.org/10.1007/978-3-319-03689-2Twitter; complex networks; graph algorithms; machine learning; social web; algorithm analysis and problem
47#
發(fā)表于 2025-3-29 19:13:26 | 只看該作者
978-3-319-03688-5Springer International Publishing Switzerland 2013
48#
發(fā)表于 2025-3-29 23:39:02 | 只看該作者
49#
發(fā)表于 2025-3-30 02:23:36 | 只看該作者
The Role of Incentive-Based Crowd-Driven Data Collection in Big Data Analytics: A Perspectivee also provide some directions about the kind of analytics that can be done on the crowd-collected data in case of different application scenarios. Furthermore, we discuss some of the open research issues in this area.
50#
發(fā)表于 2025-3-30 07:35:47 | 只看該作者
Discovering Quasi-Periodic-Frequent Patterns in Transactional Databasesled quasi-periodic-frequent patterns. Informally, a frequent pattern is said to be . if most of its occurrences are periodic in a database. We propose a model and a pattern-growth algorithm to discover these patterns. The proposed patterns do not satisfy the downward closure property. We have introd
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 07:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
保德县| 竹溪县| 泊头市| 明光市| 五指山市| 甘肃省| 鄂州市| 芦山县| 泊头市| 东乌| 株洲市| 赫章县| 晋宁县| 宁南县| 清丰县| 平顺县| 唐河县| 海林市| 张北县| 上蔡县| 鲜城| 揭东县| 井冈山市| 卢龙县| 阳江市| 阳原县| 漠河县| 凌云县| 三原县| 新乡市| 白河县| 崇礼县| 铁岭市| 湖南省| 白银市| 苏尼特左旗| 滦南县| 通化市| 滦南县| 青海省| 福泉市|