找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics; Methods and Applicat Saumyadipta Pyne,B.L.S. Prakasa Rao,S.B. Rao Book 2016 Springer India 2016 Big Data.Computational

[復制鏈接]
樓主: 涌出
41#
發(fā)表于 2025-3-28 18:35:17 | 只看該作者
https://doi.org/10.1007/978-3-662-64102-6 phenomenon. The amount, rate, and variety of data that are assembled—for almost any application domain—are necessitating a reexamination of old technologies and development of new technologies to get value from the data, in a timely fashion. With increasing adoption and penetration of mobile techno
42#
發(fā)表于 2025-3-28 22:15:14 | 只看該作者
Tobias Schl?mer,Karina Kiepe,Tim Thrunir volume, velocity, and variety (the 3 “V”s). Volume is a major concern for EHRs especially due to the presence of huge amount of null data, i.e., for storing sparse data that leads to storage wastage. Reducing storage wastage due to sparse values requires amendments to the storage mechanism that s
43#
發(fā)表于 2025-3-29 02:29:34 | 只看該作者
44#
發(fā)表于 2025-3-29 04:56:03 | 只看該作者
Tobias Schl?mer,Karina Kiepe,Tim Thrunly to explore the relationship between large-scale neural and behavorial data. In this chapter, we present a computationally efficient nonlinear technique which can be used for big data analysis. We demonstrate the efficacy of our method in the context of brain computer interface. Our technique is p
45#
發(fā)表于 2025-3-29 10:25:38 | 只看該作者
46#
發(fā)表于 2025-3-29 12:22:30 | 只看該作者
Saumyadipta Pyne,B.L.S. Prakasa Rao,S.B. RaoIntroduces new computational methods and key applications due to known international researchers and labs.Provides different application areas in Big Data applications such as management, Internet of
47#
發(fā)表于 2025-3-29 17:39:58 | 只看該作者
48#
發(fā)表于 2025-3-29 20:35:14 | 只看該作者
49#
發(fā)表于 2025-3-30 03:51:37 | 只看該作者
https://doi.org/10.1007/978-3-662-64102-6The advent of high-throughput technology has revolutionized biological sciences in the last two decades enabling experiments on the whole genome scale. Data from such large-scale experiments are interpreted at system’s level to understand the interplay among genome, transcriptome, epigenome, proteome, metabolome, and regulome.
50#
發(fā)表于 2025-3-30 07:03:00 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 09:37
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
北海市| 博湖县| 长汀县| 福海县| 如东县| 张掖市| 墨脱县| 武宁县| 阿克陶县| 内乡县| 香港| 宣威市| 土默特左旗| 三河市| 象山县| 凤冈县| 玛多县| 徐汇区| 西林县| 汝城县| 凤山县| 揭西县| 新宁县| 凤凰县| 平顶山市| 平南县| 偃师市| 永城市| 寿阳县| 高碑店市| 靖宇县| 青龙| 西充县| 龙游县| 香港 | 长治县| 老河口市| 临邑县| 双城市| 玉屏| 宁国市|