找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics; Methods and Applicat Saumyadipta Pyne,B.L.S. Prakasa Rao,S.B. Rao Book 2016 Springer India 2016 Big Data.Computational

[復(fù)制鏈接]
樓主: 涌出
41#
發(fā)表于 2025-3-28 18:35:17 | 只看該作者
https://doi.org/10.1007/978-3-662-64102-6 phenomenon. The amount, rate, and variety of data that are assembled—for almost any application domain—are necessitating a reexamination of old technologies and development of new technologies to get value from the data, in a timely fashion. With increasing adoption and penetration of mobile techno
42#
發(fā)表于 2025-3-28 22:15:14 | 只看該作者
Tobias Schl?mer,Karina Kiepe,Tim Thrunir volume, velocity, and variety (the 3 “V”s). Volume is a major concern for EHRs especially due to the presence of huge amount of null data, i.e., for storing sparse data that leads to storage wastage. Reducing storage wastage due to sparse values requires amendments to the storage mechanism that s
43#
發(fā)表于 2025-3-29 02:29:34 | 只看該作者
44#
發(fā)表于 2025-3-29 04:56:03 | 只看該作者
Tobias Schl?mer,Karina Kiepe,Tim Thrunly to explore the relationship between large-scale neural and behavorial data. In this chapter, we present a computationally efficient nonlinear technique which can be used for big data analysis. We demonstrate the efficacy of our method in the context of brain computer interface. Our technique is p
45#
發(fā)表于 2025-3-29 10:25:38 | 只看該作者
46#
發(fā)表于 2025-3-29 12:22:30 | 只看該作者
Saumyadipta Pyne,B.L.S. Prakasa Rao,S.B. RaoIntroduces new computational methods and key applications due to known international researchers and labs.Provides different application areas in Big Data applications such as management, Internet of
47#
發(fā)表于 2025-3-29 17:39:58 | 只看該作者
48#
發(fā)表于 2025-3-29 20:35:14 | 只看該作者
49#
發(fā)表于 2025-3-30 03:51:37 | 只看該作者
https://doi.org/10.1007/978-3-662-64102-6The advent of high-throughput technology has revolutionized biological sciences in the last two decades enabling experiments on the whole genome scale. Data from such large-scale experiments are interpreted at system’s level to understand the interplay among genome, transcriptome, epigenome, proteome, metabolome, and regulome.
50#
發(fā)表于 2025-3-30 07:03:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
勃利县| 昆山市| 紫阳县| 枣庄市| 五寨县| 本溪市| 凭祥市| 得荣县| 应用必备| 太白县| 镇安县| 大连市| 焉耆| 马尔康县| 汉阴县| 东城区| 张掖市| 义乌市| 云浮市| 抚顺市| 买车| 卓资县| 修武县| 邓州市| 昌乐县| 棋牌| 石楼县| 修水县| 临夏县| 西峡县| 禄丰县| 白城市| 志丹县| 隆子县| 修武县| 吉水县| 新津县| 同江市| 元朗区| 桂平市| 武义县|