找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics; Theory, Techniques, ümit Demirbaga,Gagangeet Singh Aujla,O?uzhan Kalyo Book 2024 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: 斷巖
11#
發(fā)表于 2025-3-23 13:43:04 | 只看該作者
12#
發(fā)表于 2025-3-23 15:24:30 | 只看該作者
13#
發(fā)表于 2025-3-23 19:06:06 | 只看該作者
14#
發(fā)表于 2025-3-23 22:38:14 | 只看該作者
Darren K. Griffin,Peter J. I. Ellisata, which meticulously dissects the realm of supervised machine learning for big data analytics, unravelling the challenges inherent in its application and elucidating pre-processing methodologies essential for optimal outcomes. A comprehensive array of popular supervised machine learning algorithm
15#
發(fā)表于 2025-3-24 03:00:36 | 只看該作者
16#
發(fā)表于 2025-3-24 07:00:13 | 只看該作者
Chaos in the Foreign Exchange Markets,tion of the smart grid concept, setting the stage for a nuanced understanding. The discourse seamlessly transitions to an in-depth analysis of various analytics types viable in smart grids, intricately detailing the essential reasons driving the need for such analytical interventions. Culminating th
17#
發(fā)表于 2025-3-24 13:00:33 | 只看該作者
Intradaily Exchange Rate Movementsge-scale genomic data. Delving into the challenges posed by big data in bioinformatics, the narrative unfolds to explore frameworks tailored for managing extensive genomic datasets and the pivotal role of biological databases. The core focus is applying big data analytics in bioinformatics, spanning
18#
發(fā)表于 2025-3-24 18:55:50 | 只看該作者
Cavernomas and Capillary Telangiectasias,le clicks of a mouse to the complicated data streams obtained via satellite technologies. Big data analytics is a discipline positioned to unearth priceless insights, spur innovation, and revolutionise decision-making paradigms due to the exponential growth of data. This book thoroughly introduces the complex field of big data analytics.
19#
發(fā)表于 2025-3-24 18:59:58 | 只看該作者
ümit Demirbaga,Gagangeet Singh Aujla,O?uzhan KalyoExplains how to handle big data clearly and comprehensibly and indicates the best tools for big data analysis.Describes big data systems themselves and discusses how to monitor and debug big data syst
20#
發(fā)表于 2025-3-24 23:20:12 | 只看該作者
http://image.papertrans.cn/b/image/185586.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 13:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
诸暨市| 含山县| 石景山区| 桐梓县| 湖口县| 天柱县| 屯留县| 宿州市| 永胜县| 柳州市| 自治县| 醴陵市| 江华| 抚顺市| 莎车县| 易门县| 三明市| 印江| 巴东县| 襄垣县| 江门市| 台安县| 潜江市| 永福县| 吉木萨尔县| 酒泉市| 潼南县| 玛纳斯县| 临江市| 万载县| 铁岭县| 屯留县| 淮北市| 甘德县| 沭阳县| 临颍县| 汉川市| 班玛县| 浏阳市| 珲春市| 九江市|