找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data 2.0 Processing Systems; A Survey Sherif Sakr Book 20161st edition The Author(s) 2016 Database Management Systems.Hadoop.Stream Dat

[復(fù)制鏈接]
查看: 12863|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:30:51 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Big Data 2.0 Processing Systems
期刊簡(jiǎn)稱A Survey
影響因子2023Sherif Sakr
視頻videohttp://file.papertrans.cn/186/185581/185581.mp4
發(fā)行地址Provides readers the “big picture” and a comprehensive survey of the domain of big data processing systems and discusses various aspects of research and development.Describes an entire range of engine
學(xué)科分類SpringerBriefs in Computer Science
圖書(shū)封面Titlebook: Big Data 2.0 Processing Systems; A Survey Sherif Sakr Book 20161st edition The Author(s) 2016 Database Management Systems.Hadoop.Stream Dat
影響因子.This book provides readers the “big picture” and a comprehensive survey of the domain of big data processing systems. For the past decade, the Hadoop framework has dominated the world of big data processing, yet recently academia and industry have started to recognize its limitations in several application domains and big data processing scenarios such as the large-scale processing of structured data, graph data and streaming data. Thus, it is now gradually being replaced by a collection of engines that are dedicated to specific verticals (e.g. structured data, graph data, and streaming data). The book explores this new wave of systems, which it refers to as Big Data 2.0 processing systems...After Chapter 1 presents the general background of the big data phenomena, Chapter 2 provides an overview of various general-purpose big data processing systems that allow their users to develop various big data processing jobs for different application domains. In turn, Chapter 3 examines various systems that have been introduced to support the SQL flavor on top of the Hadoop infrastructure and provide competing and scalable performance in the processing of large-scale structured data. Chapte
Pindex Book 20161st edition
The information of publication is updating

書(shū)目名稱Big Data 2.0 Processing Systems影響因子(影響力)




書(shū)目名稱Big Data 2.0 Processing Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱Big Data 2.0 Processing Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Big Data 2.0 Processing Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Big Data 2.0 Processing Systems被引頻次




書(shū)目名稱Big Data 2.0 Processing Systems被引頻次學(xué)科排名




書(shū)目名稱Big Data 2.0 Processing Systems年度引用




書(shū)目名稱Big Data 2.0 Processing Systems年度引用學(xué)科排名




書(shū)目名稱Big Data 2.0 Processing Systems讀者反饋




書(shū)目名稱Big Data 2.0 Processing Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:31:22 | 只看該作者
General-Purpose Big Data Processing Systems,pplications to process vast amounts of data on large clusters of commodity machines?(Dean and Ghemawa, OSDI, 2004, [20]). In particular, the implementation described in the original paper is mainly designed to achieve high performance on large clusters of commodity PCs. One of the main advantages of
板凳
發(fā)表于 2025-3-22 01:31:09 | 只看該作者
Large-Scale Graph Processing Systems,, neat, and flexible structure to model the complex relationships, interactions, and interdependencies between objects (Fig.?4.1). In particular, each graph consists of nodes (or vertices) that represent objects and edges (or links) that represent the relationships among the graph nodes. Graphs have
地板
發(fā)表于 2025-3-22 05:09:21 | 只看該作者
5#
發(fā)表于 2025-3-22 10:57:57 | 只看該作者
Conclusions and Outlook,ta are the most valuable asset. Therefore, Big Data analytics currently represents a revolution that cannot be missed. It is significantly transforming and changing various aspects of our modern life including the way we live, socialize, think, work, do business, conduct research, and govern society
6#
發(fā)表于 2025-3-22 13:43:51 | 只看該作者
7#
發(fā)表于 2025-3-22 20:31:37 | 只看該作者
8#
發(fā)表于 2025-3-22 23:55:54 | 只看該作者
9#
發(fā)表于 2025-3-23 03:39:17 | 只看該作者
10#
發(fā)表于 2025-3-23 05:48:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青铜峡市| 大港区| 延边| 兴海县| 惠安县| 昌平区| 专栏| 营口市| 南漳县| 阳西县| 湖州市| 盖州市| 宜兰市| 剑阁县| 威海市| 临夏县| 绥宁县| 当阳市| 虎林市| 锡林浩特市| 屯门区| 黄山市| 安塞县| 扎鲁特旗| 武鸣县| 邮箱| 莲花县| 灵武市| 库伦旗| 永丰县| 扎兰屯市| 亳州市| 金阳县| 图片| 孟村| 乌兰县| 九寨沟县| 天祝| 尚志市| 宜昌市| 都昌县|