找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data 2.0 Processing Systems; A Systems Overview Sherif Sakr Book 2020Latest edition The Editor(s) (if applicable) and The Author(s), un

[復(fù)制鏈接]
查看: 29116|回復(fù): 41
樓主
發(fā)表于 2025-3-21 20:02:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Big Data 2.0 Processing Systems
期刊簡(jiǎn)稱A Systems Overview
影響因子2023Sherif Sakr
視頻videohttp://file.papertrans.cn/186/185580/185580.mp4
發(fā)行地址Provides readers the “big picture” and a comprehensive survey of the domain of big data processing systems and discusses various aspects of research and development.Describes an entire range of engine
圖書(shū)封面Titlebook: Big Data 2.0 Processing Systems; A Systems Overview Sherif Sakr Book 2020Latest edition The Editor(s) (if applicable) and The Author(s), un
影響因子.This book provides readers the “big picture” and a comprehensive survey of the domain of big data processing systems. For the past decade, the Hadoop framework has dominated the world of big data processing, yet recently academia and industry have started to recognize its limitations in several application domains and thus, it is now gradually being replaced by a collection of engines that are dedicated to specific verticals (e.g. structured data, graph data, and streaming data). The book explores this new wave of systems, which it refers to as Big Data 2.0 processing systems...After Chapter 1 presents the general background of the big data phenomena, Chapter 2 provides an overview of various general-purpose big data processing systems that allow their users to develop various big data processing jobs for different application domains. In turn, Chapter 3 examines various systems that have been introduced to support the SQL flavor on top of the Hadoop infrastructure and provide competing and scalable performance in the processing of large-scale structured data. Chapter 4 discusses several systems that have been designed to tackle the problem of large-scale graph processing, while t
Pindex Book 2020Latest edition
The information of publication is updating

書(shū)目名稱Big Data 2.0 Processing Systems影響因子(影響力)




書(shū)目名稱Big Data 2.0 Processing Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱Big Data 2.0 Processing Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Big Data 2.0 Processing Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Big Data 2.0 Processing Systems被引頻次




書(shū)目名稱Big Data 2.0 Processing Systems被引頻次學(xué)科排名




書(shū)目名稱Big Data 2.0 Processing Systems年度引用




書(shū)目名稱Big Data 2.0 Processing Systems年度引用學(xué)科排名




書(shū)目名稱Big Data 2.0 Processing Systems讀者反饋




書(shū)目名稱Big Data 2.0 Processing Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:26:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:23:01 | 只看該作者
地板
發(fā)表于 2025-3-22 07:57:33 | 只看該作者
Rüdiger Lorenz,Margareta Klinger,Mario Brocklar techniques on harnessing the power of data by achieving powerful analytical features. This chapter focuses on discussing several systems that have been developed to support computationally expensive machine learning and deep learning algorithms on top of big data processing frameworks.
5#
發(fā)表于 2025-3-22 10:03:04 | 只看該作者
https://doi.org/10.1007/978-3-030-44187-6Database Management Systems; Hadoop; Stream Data Management; Graph Databases; Cloud Computing; Data Analy
6#
發(fā)表于 2025-3-22 16:01:11 | 只看該作者
7#
發(fā)表于 2025-3-22 20:49:58 | 只看該作者
Tau and Intracellular Transport in Neurons,a storage, and computation systems. In practice, data generation and consumption is becoming a main part of people’s daily life especially with the pervasive availability and usage of Internet technology and applications. The Big Data term has been coined under the tremendous and explosive growth of
8#
發(fā)表于 2025-3-22 22:56:14 | 只看該作者
9#
發(fā)表于 2025-3-23 05:27:44 | 只看該作者
10#
發(fā)表于 2025-3-23 08:38:56 | 只看該作者
K. D. Lerch,D. Sch?fer,J. Uelzenetween objects. Graphs have been widely used to represent datasets and encode problems across an already extensive range of application domains. The ever-increasing size of graph-structured data for these applications creates a critical need for scalable and even elastic systems that can process lar
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 22:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佳木斯市| 泽库县| 咸宁市| 武威市| 黔西| 元朗区| 湘潭县| 中宁县| 阆中市| 南汇区| 莱阳市| 鹤山市| 曲阳县| 长岛县| 崇明县| 宣化县| 麦盖提县| 图木舒克市| 万盛区| 龙里县| 巴彦淖尔市| 多伦县| 黄骅市| 囊谦县| 资阳市| 兴化市| 乌拉特前旗| 光泽县| 墨玉县| 赣榆县| 织金县| 平潭县| 会东县| 万州区| 平塘县| 南部县| 南宁市| 剑川县| 顺平县| 禄劝| 交城县|