找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data; 11th CCF Conference, Enhong Chen,Yang Gao,Wanqi Yang Conference proceedings 2023 The Editor(s) (if applicable) and The Author(s),

[復制鏈接]
樓主: 討論小組
31#
發(fā)表于 2025-3-26 21:39:43 | 只看該作者
32#
發(fā)表于 2025-3-27 04:58:15 | 只看該作者
33#
發(fā)表于 2025-3-27 08:21:35 | 只看該作者
34#
發(fā)表于 2025-3-27 12:54:31 | 只看該作者
Sara K. Howe,Antonnet Renae Johnsonty question remains a big challenge in existing KT models. This study is based on the observation that KT shows a stronger sequential dependence in the long term than in the short term. In this paper, we propose a novel KT model called “Long-term and Short-term perception in knowledge tracing (LSKT)
35#
發(fā)表于 2025-3-27 13:36:51 | 只看該作者
Sara K. Howe,Antonnet Renae Johnson domains such as energy consumption, network traffic, and solar radiation. The framework is compared with the conventional self-built MVMD-hybrid framework in terms of ARIMA model fitting time and normalized root mean square error (NRMSE) for forecasting accuracy. The results demonstrate that the pr
36#
發(fā)表于 2025-3-27 18:52:50 | 只看該作者
Sara K. Howe,Antonnet Renae Johnsonperimental results show that the accuracy, specificity and AUC of the GA-DCNN reach 0.91, 0.94 and 0.93, respectively. Compared with traditional CNN, GA-DCNN can capture the detailed features of DR lesions and integrate the classification results of the multiple DCNNs, effectively improving the dete
37#
發(fā)表于 2025-3-28 00:10:03 | 只看該作者
Sara K. Howe,Antonnet Renae Johnsoneliability of high-level feature information are maintained. 2) Attention pyramid: pass the detailed information of low-level features in a bottom-up path to enhance the feature representation; 3) ROI feature refinement: dropblock and zoom-in are used for feature refinement to effectively eliminate
38#
發(fā)表于 2025-3-28 04:41:39 | 只看該作者
39#
發(fā)表于 2025-3-28 09:25:37 | 只看該作者
40#
發(fā)表于 2025-3-28 10:49:31 | 只看該作者
Scrutinizing the Disabled Body in e classifier’s own features on model performance, which is integrated in a deep graph convolutional network that contains multiple layers of the same simplified graph network architecture and a nonlinear function that can be recursively optimized. Extensive experiments show that our approach still y
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 05:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阳新县| 民县| 永顺县| 五家渠市| 泰州市| 托克逊县| 漾濞| 耿马| 肥西县| 同德县| 德钦县| 府谷县| 中江县| 嘉禾县| 灵川县| 招远市| 清水河县| 南皮县| 永泰县| 曲阳县| 云安县| 即墨市| 昌平区| 黄石市| 石林| 青阳县| 当雄县| 蓝田县| 禹州市| 本溪市| 宣武区| 宜阳县| 澜沧| 清苑县| 昆山市| 吉安县| 阳朔县| 会同县| 潢川县| 陇西县| 澳门|