找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data; 11th CCF Conference, Enhong Chen,Yang Gao,Wanqi Yang Conference proceedings 2023 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
樓主: 討論小組
31#
發(fā)表于 2025-3-26 21:39:43 | 只看該作者
32#
發(fā)表于 2025-3-27 04:58:15 | 只看該作者
33#
發(fā)表于 2025-3-27 08:21:35 | 只看該作者
34#
發(fā)表于 2025-3-27 12:54:31 | 只看該作者
Sara K. Howe,Antonnet Renae Johnsonty question remains a big challenge in existing KT models. This study is based on the observation that KT shows a stronger sequential dependence in the long term than in the short term. In this paper, we propose a novel KT model called “Long-term and Short-term perception in knowledge tracing (LSKT)
35#
發(fā)表于 2025-3-27 13:36:51 | 只看該作者
Sara K. Howe,Antonnet Renae Johnson domains such as energy consumption, network traffic, and solar radiation. The framework is compared with the conventional self-built MVMD-hybrid framework in terms of ARIMA model fitting time and normalized root mean square error (NRMSE) for forecasting accuracy. The results demonstrate that the pr
36#
發(fā)表于 2025-3-27 18:52:50 | 只看該作者
Sara K. Howe,Antonnet Renae Johnsonperimental results show that the accuracy, specificity and AUC of the GA-DCNN reach 0.91, 0.94 and 0.93, respectively. Compared with traditional CNN, GA-DCNN can capture the detailed features of DR lesions and integrate the classification results of the multiple DCNNs, effectively improving the dete
37#
發(fā)表于 2025-3-28 00:10:03 | 只看該作者
Sara K. Howe,Antonnet Renae Johnsoneliability of high-level feature information are maintained. 2) Attention pyramid: pass the detailed information of low-level features in a bottom-up path to enhance the feature representation; 3) ROI feature refinement: dropblock and zoom-in are used for feature refinement to effectively eliminate
38#
發(fā)表于 2025-3-28 04:41:39 | 只看該作者
39#
發(fā)表于 2025-3-28 09:25:37 | 只看該作者
40#
發(fā)表于 2025-3-28 10:49:31 | 只看該作者
Scrutinizing the Disabled Body in e classifier’s own features on model performance, which is integrated in a deep graph convolutional network that contains multiple layers of the same simplified graph network architecture and a nonlinear function that can be recursively optimized. Extensive experiments show that our approach still y
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 07:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台湾省| 浦江县| 湄潭县| 澄迈县| 娱乐| 铅山县| 定州市| 襄樊市| 泰顺县| 抚宁县| 修水县| 江陵县| 江川县| 化隆| 芷江| 永清县| 瓦房店市| 盘锦市| 邹城市| 化州市| 定日县| 彰武县| 桓仁| 息烽县| 志丹县| 奉节县| 开江县| 临夏县| 卓尼县| 南京市| 本溪市| 昌平区| 教育| 长顺县| 平顶山市| 阳高县| 正安县| 西安市| 休宁县| 张掖市| 大同县|