找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data; 8th CCF Conference, Hong Mei,Weiguo Zhang,Li Wang Conference proceedings 2021 Springer Nature Singapore Pte Ltd. 2021 artificial

[復(fù)制鏈接]
樓主: 忠誠
21#
發(fā)表于 2025-3-25 03:50:10 | 只看該作者
,Multi Dimensional Evaluation of Middle School Students’ Physical and Mental Quality and Intelligentollaborative filtering), using Embedding technology and graph convolutional neural network to mine the attributes and interactive relationship features in the data, and then through the fusion of feature vector expressions to achieve personalized exercise program recommendations. The design and impl
22#
發(fā)表于 2025-3-25 07:50:39 | 只看該作者
23#
發(fā)表于 2025-3-25 11:39:18 | 只看該作者
24#
發(fā)表于 2025-3-25 19:48:17 | 只看該作者
Image Compressed Sensing Using Neural Architecture Search,struction algorithms in both running speed and reconstruction quality. However, it is a time-consuming procedure even for an expert to efficiently design a high-performance network for image CS because of various combination of different kernel size and filter number in each layer. In this paper, a
25#
發(fā)表于 2025-3-25 20:05:33 | 只看該作者
26#
發(fā)表于 2025-3-26 03:20:46 | 只看該作者
Rotation-DPeak: Improving Density Peaks Selection for Imbalanced Data, and outliers automatically distribute on upper right and upper left corner, respectively. However, DPeak is not suitable for imbalanced data set with large difference in density, where sparse clusters are usually not identified. Hence, an improved DPeak, namely Rotation-DPeak, is proposed to overco
27#
發(fā)表于 2025-3-26 05:31:49 | 只看該作者
28#
發(fā)表于 2025-3-26 08:49:45 | 只看該作者
Improving Small-Scale Dataset Classification Performance Through Weak-Label Samples Generated by Insamples, the amount of available training data is always limited (real data). Generative Adversarial Network (GAN) has good performance in generating artificial samples (generated data), the generated samples can be used as supplementary data to make up for the problem of small dataset with small sa
29#
發(fā)表于 2025-3-26 16:20:21 | 只看該作者
30#
發(fā)表于 2025-3-26 18:37:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灌阳县| 邵东县| 汕头市| 林甸县| 梅州市| 大关县| 柳州市| 陈巴尔虎旗| 乐东| 泸西县| 竹北市| 石棉县| 抚顺市| 丘北县| 衢州市| 思南县| 清丰县| 阿拉尔市| 岐山县| 建宁县| 安仁县| 高雄市| 阿城市| 清远市| 洛隆县| 商都县| 万安县| 麻江县| 原平市| 桐庐县| 新宁县| 崇州市| 黎城县| 伊金霍洛旗| 乌兰县| 高尔夫| 万全县| 南京市| 浠水县| 浦北县| 永定县|