找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data; 6th CCF Conference, Zongben Xu,Xinbo Gao,Jiajun Bu Conference proceedings 2018 Springer Nature Singapore Pte Ltd. 2018 artificia

[復(fù)制鏈接]
查看: 22732|回復(fù): 59
樓主
發(fā)表于 2025-3-21 16:32:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Big Data
期刊簡(jiǎn)稱(chēng)6th CCF Conference,
影響因子2023Zongben Xu,Xinbo Gao,Jiajun Bu
視頻videohttp://file.papertrans.cn/186/185568/185568.mp4
學(xué)科分類(lèi)Communications in Computer and Information Science
圖書(shū)封面Titlebook: Big Data; 6th CCF Conference,  Zongben Xu,Xinbo Gao,Jiajun Bu Conference proceedings 2018 Springer Nature Singapore Pte Ltd. 2018 artificia
影響因子.This volume constitutes the proceedings of the 6th CCF Conference, Big Data 2018, held in Xi‘a(chǎn)n, China, in October 2018.. .The 32 revised full papers presented in this volume were carefully reviewed and selected from 880 submissions. The papers are organized in topical sections on natural language processing and text mining; big data analytics and smart computing; big data applications; the application of big data in machine learning; social networks and recommendation systems; parallel computing and storage of big data; data quality control and data governance; big data system and management..
Pindex Conference proceedings 2018
The information of publication is updating

書(shū)目名稱(chēng)Big Data影響因子(影響力)




書(shū)目名稱(chēng)Big Data影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Big Data網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Big Data網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Big Data被引頻次




書(shū)目名稱(chēng)Big Data被引頻次學(xué)科排名




書(shū)目名稱(chēng)Big Data年度引用




書(shū)目名稱(chēng)Big Data年度引用學(xué)科排名




書(shū)目名稱(chēng)Big Data讀者反饋




書(shū)目名稱(chēng)Big Data讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:45:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:51:33 | 只看該作者
地板
發(fā)表于 2025-3-22 05:27:05 | 只看該作者
5#
發(fā)表于 2025-3-22 08:54:13 | 只看該作者
https://doi.org/10.1007/978-981-15-2878-1hat extent do device models influence the behaviors of their users? The answer to this question is critical to almost every stakeholder in the smartphone app ecosystem, including app store operators, developers, end-users, and network providers. To approach this question, we collect a longitudinal d
6#
發(fā)表于 2025-3-22 14:30:55 | 只看該作者
https://doi.org/10.1007/978-981-15-2878-1e-base, an artificial bee colony algorithm combined with Gaussian disturbance optimization was introduced, and a novel Belief rule-base parameter training method was proposed. By the light of the algorithm principle of the artificial bee colony, the honey bee colony search formula and the cross-bord
7#
發(fā)表于 2025-3-22 21:03:58 | 只看該作者
https://doi.org/10.1057/978-1-137-56036-0h. However, the most existing community search methods do not consider the influence of nodes and can not perfectly support the search in large graphs, making them have limitations in practical applications. In this paper, we introduce a community model called . community based on .-core decompositi
8#
發(fā)表于 2025-3-23 00:20:55 | 只看該作者
https://doi.org/10.1057/978-1-137-56036-0entific impact prediction, which is mainly based on longtime accumulated citation networks, metadata and the whole text of papers, is relatively hysteretic and can hardly fit the rapid development of technology. Moreover, Twitter has become one of the most import channels to spread latest technique
9#
發(fā)表于 2025-3-23 02:26:42 | 只看該作者
10#
發(fā)表于 2025-3-23 07:54:25 | 只看該作者
https://doi.org/10.1057/978-1-137-56036-0eries on time-dependent network to find the optimal path, for example: shortest route, highest scoring route, etc. However, in practical application, users will want to be satisfied with the constraint and evaluate the good routes to make a choice, for example, users want to look for the well-evalua
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淮南市| 海兴县| 彭州市| 长丰县| 巴彦淖尔市| 城市| 桦南县| 洪湖市| 吴堡县| 金坛市| 临清市| 册亨县| 哈密市| 赤城县| 迁安市| 唐山市| 松桃| 甘泉县| 峨边| 黄梅县| 铅山县| 曲沃县| 云南省| 安丘市| 滦南县| 汝阳县| 体育| 桃江县| 同江市| 应城市| 松桃| 辽宁省| 象州县| 赞皇县| 灌南县| 凭祥市| 德阳市| 关岭| 英吉沙县| 吕梁市| 兴海县|