找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations of Planar Vector Fields; Proceedings of a Mee Jean-Pierre Fran?oise,Robert Roussarie Conference proceedings 1990 Springer-Verl

[復(fù)制鏈接]
樓主: Thoracic
21#
發(fā)表于 2025-3-25 04:30:16 | 只看該作者
On first integrals of linear systems, Frobenius integrability theorem and linear representations ofble linear vector fields cannot have a common global first integral..This leads us to ask many simple and natural questions, some of them about representations of Lie algebras by Lie algebras of linear vector fields..Some historical comments and abundant references are also provided.
22#
發(fā)表于 2025-3-25 08:54:25 | 只看該作者
On the saddle loop bifurcation,ons with the same modulus are (C.,±Identity)-equivalent..A side result states that the Poincaré map of the connection is C.-conjugate to the mapping x?x...In the last part of the paper is shown how to finish the proof that the Bogdanov-Takens bifurcation has exactly two models for (C.,C.)-equivalence.
23#
發(fā)表于 2025-3-25 15:39:56 | 只看該作者
https://doi.org/10.1007/978-3-531-90002-5we choose, it serves to illustrate some techniques which are developed for treating similar bifurcation problems when the first order methods are inconclusive. Actually, we are able to treat the bifurcations of all orders.
24#
發(fā)表于 2025-3-25 17:50:27 | 只看該作者
On bifurcation of limit cycles from centers,we choose, it serves to illustrate some techniques which are developed for treating similar bifurcation problems when the first order methods are inconclusive. Actually, we are able to treat the bifurcations of all orders.
25#
發(fā)表于 2025-3-25 20:12:13 | 只看該作者
26#
發(fā)表于 2025-3-26 02:09:10 | 只看該作者
27#
發(fā)表于 2025-3-26 04:19:51 | 只看該作者
,Limit cycles and zeroes of Abelian integrals satisfying third order picard — Fuchs equations,
28#
發(fā)表于 2025-3-26 12:12:10 | 只看該作者
29#
發(fā)表于 2025-3-26 15:41:03 | 只看該作者
30#
發(fā)表于 2025-3-26 19:43:59 | 只看該作者
Bifurcation in a quartic polynomial system arising in biology,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
油尖旺区| 祁连县| 隆尧县| 兴城市| 应用必备| 伊金霍洛旗| 成武县| 梅州市| 隆安县| 巴马| 台南市| 长泰县| 鄯善县| 连江县| 英山县| 墨玉县| 万载县| 新泰市| 汕头市| 长顺县| 界首市| 岳西县| 德安县| 临高县| 西城区| 壤塘县| 彝良县| 贺州市| 柳州市| 宁都县| 镇宁| 宾阳县| 临江市| 塔城市| 元阳县| 绵竹市| 马鞍山市| 任丘市| 通河县| 宜兰市| 长子县|