找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations of Planar Vector Fields; Nilpotent Singularit Freddy Dumortier,Robert Roussarie,Henryk ?a?adek Book 1991 Springer-Verlag Berli

[復(fù)制鏈接]
查看: 7119|回復(fù): 43
樓主
發(fā)表于 2025-3-21 19:44:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Bifurcations of Planar Vector Fields
期刊簡(jiǎn)稱Nilpotent Singularit
影響因子2023Freddy Dumortier,Robert Roussarie,Henryk ?a?adek
視頻videohttp://file.papertrans.cn/186/185556/185556.mp4
學(xué)科分類Lecture Notes in Mathematics
圖書封面Titlebook: Bifurcations of Planar Vector Fields; Nilpotent Singularit Freddy Dumortier,Robert Roussarie,Henryk ?a?adek Book 1991 Springer-Verlag Berli
影響因子The book reports on recent work by the authors on the bifurcation structure of singular points of planar vector fields whose linear parts are nilpotent. The bifurcation diagrams of the most important codimension-three cases are studied in detail. The results presented reach the limits of what is currently known on the bifurcation theory of planar vector fields. While the treatment is geometric, special analytical tools using abelian integrals are needed, and are explicitly developed. The rescaling and normalization methods are improved for application here. The reader is assumed to be familiar with the elements of Bifurcation and Dynamical Systems Theory. The book is addressed to researchers and graduate students working in Ordinary Differential Equations and Dynamical Systems, as well as anyone modelling complex multiparametric phenomena.
Pindex Book 1991
The information of publication is updating

書目名稱Bifurcations of Planar Vector Fields影響因子(影響力)




書目名稱Bifurcations of Planar Vector Fields影響因子(影響力)學(xué)科排名




書目名稱Bifurcations of Planar Vector Fields網(wǎng)絡(luò)公開(kāi)度




書目名稱Bifurcations of Planar Vector Fields網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Bifurcations of Planar Vector Fields被引頻次




書目名稱Bifurcations of Planar Vector Fields被引頻次學(xué)科排名




書目名稱Bifurcations of Planar Vector Fields年度引用




書目名稱Bifurcations of Planar Vector Fields年度引用學(xué)科排名




書目名稱Bifurcations of Planar Vector Fields讀者反饋




書目名稱Bifurcations of Planar Vector Fields讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:36:01 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:08:30 | 只看該作者
地板
發(fā)表于 2025-3-22 04:51:51 | 只看該作者
5#
發(fā)表于 2025-3-22 09:07:48 | 只看該作者
6#
發(fā)表于 2025-3-22 16:00:57 | 只看該作者
https://doi.org/10.1007/BFb0098353Vector field; bifurcation; differential equation; dynamical systems; integral; ordinary differential equa
7#
發(fā)表于 2025-3-22 19:42:50 | 只看該作者
978-3-540-54521-7Springer-Verlag Berlin Heidelberg 1991
8#
發(fā)表于 2025-3-22 22:29:25 | 只看該作者
Interview und dokumentarische MethodeIn this work it is shown that, for small β., the system .=., .=±.+α..+.+β.+β..+β.... has at most two limit cycles when α≠(?1/8, ∞)?{0} (Part II) and also when α
9#
發(fā)表于 2025-3-23 01:29:42 | 只看該作者
Abelian integrals in unfoldings of codimension 3 singular planar vector fields,In this work it is shown that, for small β., the system .=., .=±.+α..+.+β.+β..+β.... has at most two limit cycles when α≠(?1/8, ∞)?{0} (Part II) and also when α
10#
發(fā)表于 2025-3-23 08:49:06 | 只看該作者
Bifurcations of Planar Vector Fields978-3-540-38433-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桐城市| 辽阳县| 土默特左旗| 都江堰市| 保康县| 都昌县| 汝城县| 临西县| 岱山县| 济宁市| 湖北省| 郧西县| 玉环县| 平谷区| 和平区| 陇川县| 华宁县| 静宁县| 民丰县| 林周县| 花垣县| 洞口县| 濉溪县| 尼勒克县| 仪陇县| 巴东县| 明光市| 新竹县| 屏山县| 文安县| 桐梓县| 东明县| 搜索| 资阳市| 井陉县| 利川市| 英德市| 道孚县| 图片| 张家港市| 阿坝县|