找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations and Periodic Orbits of Vector Fields; Dana Schlomiuk Book 1993 Springer Science+Business Media Dordrecht 1993 computer.comput

[復(fù)制鏈接]
樓主: 鳴叫大步走
41#
發(fā)表于 2025-3-28 15:40:37 | 只看該作者
Local Dynamics and Nonlocal Bifurcations,nonlinear Stokes phenomena, and so on. In the third chapter, a sketch of the proof of the finiteness theorem for limit cycles of a polynomial vector field in the plane is given. The last chapter is devoted to the smooth analogue of Hilbert’s problem, the so-called Hilbert-Arnold problem. It deals wi
42#
發(fā)表于 2025-3-28 19:51:57 | 只看該作者
,Singularités d’équations différentielles holomorphes en dimension deux,on . = 0 are the leaves of a holomorphic foliation .. of . {.}. In the seventies, R. Thom asked very interesting questions about these objects. They are now well understood. This work is mainly devoted to proving the following: . = 0 has a holomorphic first integral if and only .. has a finite numb
43#
發(fā)表于 2025-3-29 01:07:23 | 只看該作者
Techniques in the Theory of Local Bifurcations: Cyclicity and Desingularization,analytic unfolding is bounded, or more precisely, whether any limit periodic set has finite cyclicity. In these notes we introduce several techniques for attacking this question: asymptotic expansion of return maps, ideal of coefficients, desingularization of parametrized families. Moreover, because
44#
發(fā)表于 2025-3-29 03:06:31 | 只看該作者
Bifurcation Methods in Polynomial Systems, problem for quadratic vector fields by means of analytic methods and we discuss the progress made in that direction. In the second part we discuss the use of Abelian integrals to obtain limit cycles of polynomial systems. We first give an overview of known results with an idea of the methods involv
45#
發(fā)表于 2025-3-29 11:06:55 | 只看該作者
10樓
46#
發(fā)表于 2025-3-29 11:27:00 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘洛县| 贵溪市| 张北县| 辽源市| 渝北区| 广饶县| 长宁县| 钟祥市| 贵溪市| 眉山市| 邓州市| 丰台区| 水富县| 开原市| 彭阳县| 开平市| 阿克陶县| 赤峰市| 比如县| 深泽县| 河池市| 沙湾县| 扬中市| 津市市| 武功县| 阿荣旗| 类乌齐县| 崇左市| 库车县| 江都市| 宜君县| 饶阳县| 白水县| 安溪县| 凤庆县| 广宁县| 什邡市| 卓尼县| 沾益县| 闸北区| 鄱阳县|