找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations and Periodic Orbits of Vector Fields; Dana Schlomiuk Book 1993 Springer Science+Business Media Dordrecht 1993 computer.comput

[復(fù)制鏈接]
樓主: 鳴叫大步走
41#
發(fā)表于 2025-3-28 15:40:37 | 只看該作者
Local Dynamics and Nonlocal Bifurcations,nonlinear Stokes phenomena, and so on. In the third chapter, a sketch of the proof of the finiteness theorem for limit cycles of a polynomial vector field in the plane is given. The last chapter is devoted to the smooth analogue of Hilbert’s problem, the so-called Hilbert-Arnold problem. It deals wi
42#
發(fā)表于 2025-3-28 19:51:57 | 只看該作者
,Singularités d’équations différentielles holomorphes en dimension deux,on . = 0 are the leaves of a holomorphic foliation .. of . {.}. In the seventies, R. Thom asked very interesting questions about these objects. They are now well understood. This work is mainly devoted to proving the following: . = 0 has a holomorphic first integral if and only .. has a finite numb
43#
發(fā)表于 2025-3-29 01:07:23 | 只看該作者
Techniques in the Theory of Local Bifurcations: Cyclicity and Desingularization,analytic unfolding is bounded, or more precisely, whether any limit periodic set has finite cyclicity. In these notes we introduce several techniques for attacking this question: asymptotic expansion of return maps, ideal of coefficients, desingularization of parametrized families. Moreover, because
44#
發(fā)表于 2025-3-29 03:06:31 | 只看該作者
Bifurcation Methods in Polynomial Systems, problem for quadratic vector fields by means of analytic methods and we discuss the progress made in that direction. In the second part we discuss the use of Abelian integrals to obtain limit cycles of polynomial systems. We first give an overview of known results with an idea of the methods involv
45#
發(fā)表于 2025-3-29 11:06:55 | 只看該作者
10樓
46#
發(fā)表于 2025-3-29 11:27:00 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
神木县| 武隆县| 汝城县| 上犹县| 大理市| 武汉市| 永福县| 嘉黎县| 福安市| 辽源市| 双牌县| 久治县| 汾西县| 四会市| 奉节县| 台南县| 沙洋县| 朔州市| 凉山| 衡山县| 吴忠市| 岳阳市| 肇源县| 仙游县| 霍山县| 尼勒克县| 万全县| 营山县| 唐海县| 南澳县| 松潘县| 沐川县| 蓬莱市| 武功县| 沾益县| 都匀市| 白玉县| 乐东| 桃园市| 赣榆县| 井研县|